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Существуют ли определённые интегралы от разрывных функций?  
 

 

Не буду томить вас долгими ожиданиями, сразу отвечу – да, такие интегралы есть. 

 

Как вы хорошо знаете, для любой непрерывной на отрезке  bа;  функции )(xfy   

существует определённый интеграл 
b

a

dxxf )( , которому соответствует некоторая фигура 

конечной площади. Иными словами, из непрерывности функции на отрезке следует её 

интегрируемость на нём. 

 

Однако знают чётко уже не все, что непрерывность – это всего лишь достаточное 

условие интегрируемости, оно вовсе не необходимое. То есть существуют определённые  

интегралы и от разрывных на отрезке интегрирования функций! А именно, это тот случай, 

когда функция непрерывна на отрезке всюду, за исключением конечного количества точек 

разрыва 1-го рода. Напоминаю, что это устранимые разрывы либо разрывы «со скачком». 

 

Рассмотрим пару примеров как раз из статьи о непрерывности функции.  

 

Выясним, существует ли  


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23

1
dx

x

xx
, и вычислим его в случае положительного 

ответа. Подынтегральная функция терпит разрыв на отрезке интегрирования в точке 1x , 

определим его характер. Очевидно, функцию можно упростить естественным образом: 
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 , имея в виду, что 1x . И геометрически всё хорошо:  

Интегралу  


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xx
 соответствует конечная 

площадь, невзирая на выколотую точку, ибо с точки 

зрения геометрии, её площадь равна нулю. Осталось 

провести расчёты, и технически здесь есть разные 

пути. Во-первых, можно доопределить функцию в 

точке, устраняя разрыв: 1)( xf , если 1x , и после 

этого действия, которое, конечно же, следует  

письменно прокомментировать, разбираемся с 

интегралом «как обычно»: 
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Но этот трюк проходит далеко не всегда. Второй, более академичный способ 

состоит в разбиении интеграла (и площади) на две части, с последующим расчётом 

односторонних пределов: 
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Теперь рассмотрим другой случай:  


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, тот же отрезок интегрирования и 

та же «нехорошая» точка. Раскрывая модуль 
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  и учитывая, что 1x , 

распишем функцию в кусочном виде: 
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И тут у нас разрыв «со скачком»:  

 

Несмотря на то, что функция не определена 

в точке 1x , конечная площадь существует, по 

той причине, что площадь «стыкового» отрезка 

(между выколотыми точками) равна нулю, и его 

можно во внимание не принимать. 

 

Доопределять функцию смысла не имеет, 

поэтому сразу делим интеграл на две части: 
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Первый интеграл вычислим с помощью левостороннего предела, при этом он 

получится со знаком «минус», коль скоро криволинейная трапеция лежит ниже OX . 

Обращаю внимание, что дополнительный «минус» ставить не нужно, поскольку мы 

рассчитываем именно определённый интеграл, а не площадь фигуры. 

 

Второй («синий») интеграл вычислим с помощью правостороннего предела: 
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Готово. 

 

Точки разрыва 1-го рода, разумеется, могут располагаться и на концах отрезка 

интегрирования, и как уже отмечалось, их может быть несколько или даже очень много. 

Важно, чтобы конечное количество. Нет никаких проблем «распилить» интеграл на 

бОльшее количество частей, и «склеить» их затем в единую сумму. 

 

В том случае, если на отрезке интегрирования имеет место разрыв 2-го рода, то 

речь заходит о несобственном интеграле второго рода.  

 

Но это уже другая история (с). 
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