Заметили опечатку / ошибку? Пожалуйста, сообщите мне об этом
Асимптоты графика функции
Призрак асимптоты давно бродил по сайту чтобы, наконец, материализоваться в отдельно взятой статье и привести в особый восторг читателей, озадаченных полным исследованием функции. В школе асимптоты изучают в обзорном порядке (обычно), ибо их нахождение связано с вычислением пределов, а они относятся к высшей математике. …Стоп-стоп, дорогие пионеры, вы куда? Пределы – это легко!
Примеры асимптот встретились сразу же на первом уроке о графиках элементарных функций, и сейчас тема получает детальное рассмотрение.
Итак, что такое асимптота?
Представьте переменную точку, которая «ездит» по графику функции. Асимптота – этопрямая, к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.
Примечание: определение содержательно, если вам необходима формулировка в обозначениях математического анализа, пожалуйста, обратитесь к учебнику.
Попросту говоря, асимптота – это прямая, к которой бесконечно близко прижимается график функции. Но не пересекает её.
На плоскости асимптоты классифицируют по их естественному расположению:
1) Вертикальные асимптоты, которые задаются уравнением вида , где «альфа» – действительное число. Популярная представительница определяет саму ось ординат, с приступом лёгкой тошноты вспоминаем гиперболу .
2) Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты . Например, та же гипербола с асимптотой .
Резво пошло-поехало, ударим по теме короткой автоматной очередью:
сколько асимптот может быть у графика функции?
Ни одной, одна, две, три, … или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции. Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса – бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.
Что значит найти асимптоты графика функции?
Это значит выяснить их уравнения, ну и начертить прямые линии, если того требует условие задачи. Процесс предполагает нахождение пределов функции.
Теперь о разновидностях асимптот.
Вертикальные асимптоты графика функции
Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.
Примечание: обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой – зависит от контекста.
Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции. Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций).
Из вышесказанного также следует очевидный факт: если функция непрерывна на , то вертикальные асимптоты отсутствуют. На ум почему-то пришла парабола. Действительно, где тут «воткнёшь» прямую? …Да…, понимаю…, последователи дядюшки Фрейда забились в истерике =)
Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.
Наклонные асимптоты графика функции
Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс» бесконечности или к «минус» бесконечности. Поэтому график функции не может иметь больше двух наклонных асимптот. Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при , а график арктангенса при – двумя такими асимптотами, причём различными.
Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью . Например, …правильно догадались: .
Общее практическое правило:
если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.
Примечание: формулы остаются справедливыми, если «икс» стремится только к «плюс» бесконечностиили только к «минус» бесконечности.
Покажем, что у параболы нет наклонных асимптот:
Предел бесконечен, значит, наклонная асимптота отсутствует. Заметьте, что в нахождении предела необходимость отпала, поскольку ответ уже получен.
Примечание: если у вас возникли / возникнут трудности с пониманием знаков «плюс-минус», «минус-плюс», пожалуйста, посмотрите справку в начале урока о бесконечно малых функциях, где я рассказал, как правильно интерпретировать эти знаки.
Очевидно, что у любой квадратичной, кубической функции, многочлена 4-й и высших степеней также нет наклонных асимптот.
А теперь убедимся, что при у графика тоже нет наклонной асимптоты. Для раскрытия неопределённости используем правило Лопиталя: , что и требовалось проверить.
При функция неограниченно растёт, однако не существует такой прямой, к которой бы её график приближался бесконечно близко.
Переходим к практической части урока:
Как найти асимптоты графика функции?
Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных / горизонтальных). Хотя, если быть более точным в постановке вопроса – речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться). Начнём с чего-нибудь простого:
Пример 1
Найти асимптоты графика функции
Решение удобно разбить на два пункта:
1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв, а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, нужно найти односторонние пределы:
Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва. В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного: .
А вот в знаменателе получается бесконечно малое отрицательное значение : , оно и определяет судьбу предела.
Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого – они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО. Поэтому обязательно вычислим и правосторонний предел:
Вывод: односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .
2) Проверим наличие наклонных асимптот:
Первый предел конечен, поэтому «продолжаем разговор» и находим второй предел:
Второй предел тоже конечен.
Таким образом, наша асимптота:
Вывод: прямая, заданная уравнением является горизонтальной асимптотой графика функции при .
Для нахождения горизонтальной асимптоты можно пользоваться упрощенной формулой:
если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .
Нетрудно заметить, что числитель и знаменатель функции одного порядка роста, а значит, искомый предел будет конечным:
Ответ:
По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции, то на черновике сразу же делаем набросок:
Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции, и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.
Пример 2
Найти асимптоты графика функции
Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта – вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдена по упрощенной схеме.
На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:
Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)
В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители: (для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.
Перепишем функцию в виде
Найдём односторонние пределы в точке :
и в точке :
Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.
2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас есть горизонтальная асимптота. Покажем её наличие коротким способом:
Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.
Ответ:
Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:
Схематично изобразите вашу версию графика на черновике.
Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции. Правильная картинка – в конце урока.
Пример 4
Найти асимптоты графика функции
Пример 5
Найти асимптоты графика функции
Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше, чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста. В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая – через предел .
Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:
Пример 6
Найти асимптоты графика функции
Решение: классика жанра:
1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово – отлично! Пункт 1 закрыт.
2) Проверим наличие наклонных асимптот:
Первый предел конечен, поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:
Второй предел тоже конечен, следовательно, у графика рассматриваемой функции существует наклонная асимптота:
Вывод:
Таким образом, при график функции бесконечно близко приближается к прямой :
Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы – важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).
Пример 7
Найти асимптоты графика функции
Решение: комментировать особо нечего, поэтому оформлю примерный образец чистового решения:
1) Вертикальные асимптоты. Исследуем точку .
Прямая является вертикальной асимптотой для графика при .
2) Наклонные асимптоты:
Прямая является наклонной асимптотой для графика при .
Ответ:
Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.
Пример 8
Найти асимптоты графика функции
Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.
Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше – наклонной асимптоты уже не будет (например, ).
Но в жизни происходят и другие чудеса:
Пример 9
Исследовать график функции на наличие асимптот
Решение: функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствует. Но вот наклонные вполне могут быть. Проверяем:
Вспоминаю, как ещё в ВУЗе столкнулся с похожей функцией и просто не мог поверить, что у неё есть наклонная асимптота. До тех пор, пока не вычислил второй предел:
Строго говоря, здесь две неопределённости: и , но так или иначе, нужно использовать метод решения, который разобран в Примерах 5-6 статьи о пределах повышенной сложности. Умножаем и делим на сопряженное выражение, чтобы воспользоваться формулой :
Ответ:
Пожалуй, самая популярная наклонная асимптота.
До сих пор бесконечности удавалось «стричь под одну гребёнку», но бывает, что у графика функции две разные наклонные асимптоты при и при :
Пример 10
Исследовать график функции на наличие асимптот
Решение: подкоренное выражение положительно, значит, область определения – любое действительно число, и вертикальных палок быть не может.
Проверим, существуют ли наклонные асимптоты.
Если «икс» стремится к «минус» бесконечности, то: (при внесении «икса» под квадратный корень необходимо добавить знак «минус» перед корнем, чтобы не потерять отрицательность знаменателя)
Выглядит необычно, но здесь неопределённость «бесконечность минус бесконечность». Умножаем числитель и знаменатель на сопряженное выражение:
Таким образом, прямая является наклонной асимптотой графика при .
С «плюс» бесконечностью всё тривиальнее:
А прямая – есть асимптота при .
Ответ: , если ; , если .
Не удержусь от графического изображения:
Это одна из ветвей гиперболы.
Решение: очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.
1) Функция непрерывна на интервале , а значит, если вертикальная асимптота и существует, то это может быть только ось ординат. Исследуем поведение функции вблизи точки справа:
Обратите внимание, здесь НЕТ неопределённости (на таких случаях акцентировалось внимание в начале статьи Методы решения пределов).
Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .
2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопиталя мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).
Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .
Ответ: , если ; , если .
Чертёж для наглядности:
Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).
Два заключительных примера для самостоятельного изучения:
Пример 12
Исследовать график функции на наличие асимптот
Для проверки на вертикальные асимптоты сначала нужно найти область определения функции, а затем вычислить пару односторонних пределов в «подозрительных» точках. Наклонные асимптоты тоже не исключены, поскольку функция определена на «плюс» и «минус» бесконечности.
Пример 13
Исследовать график функции на наличие асимптот
А здесь могут быть только наклонные асимптоты, причём направления , следует рассмотреть отдельно.
Надеюсь, вы отыскали нужную асимптоту =)
Желаю успехов!
Решения и ответы:
Пример 2. Решение: 1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Найдём односторонние пределы: Прямая является вертикальной асимптотой графика функции при .
2) Наклонные асимптоты. Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ:
Чертёжк Примеру 3:
Пример 4. Решение: 1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Вычислим односторонние пределы: Примечание: бесконечно малое отрицательное значение в чётной степени равно бесконечно малому положительному значению: . Прямая является вертикальной асимптотой графика функции.
2) Наклонные асимптоты. Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ:
Пример 5. Решение: 1) Исследуем функцию на наличие вертикальных асимптот. Найдём точки, в которых знаменатель обращается в ноль: Действительных корней нет. Исследуемая функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствуют.
2) Наклонные асимптоты. Прямая является горизонтальной асимптотой графика функции при .
Ответ:
Чертёж к Примеру 7:
Пример 8. Решение: 1) Вертикальные асимптоты. Исследуем точку . , Примечание: бесконечно малая отрицательная величина в нечётной степени равна бесконечно малой отрицательной величине: . . Прямая (ось ) является вертикальной асимптотой для графика , если .
2) Наклонные асимптоты: Прямая является наклонной асимптотой для графика при .
1) Проверим наличие вертикальных асимптот. Для удобства и наглядности вычислений разложим аргумент логарифма на множители: Вычислим односторонние пределы: Таким образом, прямые являются вертикальными асимптотами для графика функции при и соответственно.
2) Наклонные асимптоты. Дважды используем правило Лопиталя: Первый предел конечен, находим второй предел: Значит, наклонные асимптоты отсутствуют.
Ответ: , если ; , если .
Пример 13. Решение: так как функция непрерывна на , то вертикальные асимптоты отсутствуют.
Выясним, есть ли у графика наклонные асимптоты: Значит, при у графика нет наклонной асимптоты. Таким образом, прямая является горизонтальной асимптотой графика данной функции при .