Заметили опечатку / ошибку? Пожалуйста, сообщите мне об этом
Как построить график функции с помощью геометрических преобразований графиков?
Эта обширная справка логично продолжает статью Графики и свойства элементарных функций, где мы рассмотрели основные методы и правила построения графиков. И следующая ступень посвящения – геометрические преобразования графиков функций.
Что это такое? Рассмотрим какую-нибудь элементарную функцию, например, . Подавляющему большинству читателей не составит труда построить кубическую параболу, но что делать, если требуется начертить график функции или ? Интуиция подсказывает, что совершенно не нужно тратить уйму времени и проводить полное исследование функции, достаточно выполнить некоторые геометрические преобразования кубической параболы . Её график можно сжимать / растягивать, сдвигать вдоль осей, симметрично отображать и т. п. То есть несколько волшебных пассов, и кривые готовы! Более того, с опытом вы будете рисовать их с ходу.
Арсенал преобразований графиков разнообразен как набор пыток святой инквизиции, и опытные читатели могут сразу выбрать... нет, на этот раз не участь, а нужный инструмент:)
Сжатие (растяжение) графика к (от) оси ординат.
Симметричное отображение графика относительно оси
Первая группа действий связана с умножением АРГУМЕНТА функции (обычно это «икс») на число. Для удобства я разобью правило на несколько пунктов:
Сжатие графика функции к оси ординат
Это случай когда АРГУМЕНТ функции умножен на число, бОльшее единицы.
Правило: чтобы построить график функции , где , нужно график функции сжать к оси в раз.
И первым на эшафот взойдёт синус, cначала он мучал нас, теперь мы будем мучать его ^^):
Пример 1
Построить график функции .
Сначала изобразим график синуса, его период равен :
К слову, чертить графики тригонометрических функций вручную – занятие кропотливое, поскольку и т. д., то есть на стандартной клетчатой бумаге аккуратным нужно быть вплоть до миллиметра, даже до полумиллиметра. Впрочем, многие с этим уже столкнулись.
Теперь поиграем на бесконечно длинном баяне. Мысленно возьмём синусоиду в руки и сожмём её к оси в 2 раза:
То есть график функции получается путём сжатия графика к оси ординат в два раза. Логично, что период итоговой функции тоже уполовинился:
В целях самоконтроля можно взять 2-3 значения «икс» и устно либо на черновике выполнить подстановку:
Смотрим на чертёж, и видим, что это действительно так.
Аналогичную блиц-проверку полезно осуществлять в любом другом примере! Тем более, она лучше поможет усвоить суть того или иного преобразования.
Пример 2
Построить график функции
«Чёрная гармошка» сжимается к оси в 3 раза:
Итоговый график проведён красным цветом.
Исходный период косинуса закономерно уменьшается в три раза: (отграничен жёлтыми точками).
Растяжение графика функции от оси ординат
Это противоположное действие, теперь баян не сжимается, а растягивается.
Случай имеет место, когда АРГУМЕНТ функции умножается на число .
Правило: чтобы построить график функции , где , нужно график функции растянуть от оси в раз.
Продолжим мучить синус:
Пример 3
Построить график функции
Берём в руки нашу «бесконечную гармошку»:
и растягиваем её от оси в 2 раза:
То есть график функции получается путём растяжения графика от оси ординат в два раза. Период итоговой функции увеличивается в 2 раза: , он толком даже не вместился на данный чертёж.
Операции сжатия / растяжения графиков, разумеется, выполнимы не только для тригонометрических функций:
Пример 4
Построить графики функций
График функции получается путём сжатия графика экспоненты к оси в два раза. А график – путём растяжения графика экспоненты от оси в два раза:
В качестве ассоциации можете опять поиграть на «баяне» .
Итак, запомним, при происходит сжатие графика, а при – растяжение.
Очевидно, что нет практического смысла рассматривать значения . Есть более интересный вопрос: что происходит, когда аргумент умножается на отрицательное число? Ответ будет дан чуть ниже, после того, как рассмотрим распространённый частный случай, когда :
Симметричное отображение графика функции относительно оси ординат
АРГУМЕНТ функции меняет знак.
Правило: чтобы построить график функции , нужно график отобразить симметрично относительно оси .
График функции получается путём симметричного отображения графика относительно оси ординат:
Как видите, всё просто.
Если при умножении аргумента на число значение параметра отрицательно и не равно минус единице, то построение выполняется в два шага. Например: . На первом шаге выполняем сжатие графика к оси ординат в 2 раза: . На втором шаге график отображаем симметрично относительно оси ординат: . Конкретный пример обязательно рассмотрим ниже.
А следующий параграф посвящается одному интересному человеку из дворовой компании моего далёкого детства. Он вытягивал руки в стороны, открывал рот и прыгал влево-вправо по проезжей части. Водители крутили виском у пальца, сигналили, но догнать его так никто и не смог.
Сдвиг графика влево / вправо вдоль оси абсцисс
Если к АРГУМЕНТУ функции добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси . Рассмотрим функцию и положительное число :
Правила:
1) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц влево;
2) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вправо.
Как вы, наверное, подметили, в правилах работает некий принцип «наоборот».
Пример 6
Построить график функции
Берём параболу и сдвигаем её вдоль оси абсцисс на 1 единицу вправо:
«Опознавательным маячком» служит значение , именно здесь находится вершина параболы .
Теперь, думаю, ни у кого не возникнет трудностей с построением графика (демонстрационный пример начала урока) – кубическую параболу нужно сдвинуть на 2 единицы влево.
Вот ещё один характерный случай:
Пример 7
Построить график функции
Гиперболу (чёрный цвет) сдвинем вдоль оси на 2 единицы влево:
Перемещение гиперболы «выдаёт» значение, которое не входит в область определения функции. В данном примере , иуравнение прямой задаёт вертикальную асимптоту(красный пунктир) графика функции (красная сплошная линия). Таким образом, при параллельном переносе асимптота графика тоже сдвигается (что очевидно).
Вернёмся к тригонометрическим функциям:
Пример 8
Построить график функции
График синуса (чёрный цвет) сдвинем вдоль оси на влево:
Внимательно присмотримся к полученному красному графику …. Это в точности график косинуса ! По сути, мы получили геометрическую иллюстрацию формулы приведения, и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции. График функции получается путём сдвига синусоиды вдоль оси на единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций). Аналогично можно убедиться в справедливости любой другой формулы приведения.
Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: , при этом параметр «ка» не равен нулю или единице, параметр «бэ» – не равен нулю. Как построить график такой функции? Из школьного курса мы знаем, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем / растягиваем / отображаем в зависимости от значения , а потом сдвигаем на единиц. Но здесь есть подводный камень, и корректный алгоритм таков:
аргумент функции нужно представить в виде и последовательно выполнить следующие преобразования:
1) График функции сжимаем (или растягиваем) к оси (от оси) ординат:. Если , то график дополнительно следует отобразить симметрично относительно оси .
2) График полученной функции сдвигаем влево (или вправо) вдоль оси абсцисс на (!!!) единиц, в результате чего будет построен искомый график .
Пример 9
Построить график функции
Представим функцию в виде и выполним следующие преобразования: синусоиду (чёрный цвет):
1) сожмём к оси в два раза: (синий цвет);
2) сдвинем вдоль оси на (!!!) влево: (красный цвет):
Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого. График сдвигается на , а вовсе не на .
Продолжаем расправляться с функциями, на очереди логарифм:
Пример 10
Построить график функции
Представим функцию в виде . В данном случае: Построение проведём в три шага. График натурального логарифма :
1) сожмём к оси в 2 раза: ;
2) отобразим симметрично относительно оси : ;
3) сдвинем вдоль оси на (!!!) вправо: :
Для самоконтроля в итоговую функцию можно подставить пару значений «икс», например, и свериться с полученным графиком.
В рассмотренных параграфах события происходили «горизонтально» – гармонь играет, ноги пляшут влево / вправо. Но похожие преобразования происходят и в «вертикальном» направлении – вдоль оси . Принципиальное отличие состоит в том, что связаны они не с АРГУМЕНТОМ, а с САМОЙ ФУНКЦИЕЙ.
Растяжение (сжатие) графика ВДОЛЬ оси ординат. Симметричное отображение графика относительно оси абсцисс
Структура второй части статьи будет очень похожа.
1) Если ФУНКЦИЯ умножается на число , то происходит растяжение её графика вдоль оси ординат.
Правило: чтобы построить график функции , где , нужно график функции растянуть вдоль оси в раз.
2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат.
Правило: чтобы построить график функции , где , нужно график функции сжать вдоль оси в раз.
Догадайтесь, какую функцию я буду снова пытать =)
Пример 11
Построить графики функций .
Берём синусоиду за макушку / пятки:
и
вытягиваем её вдоль оси в 2 раза:
Период функции не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .
Теперь сожмём синусоиду вдоль оси в 2 раза:
Аналогично, период не изменился, но область значений функции «сплющилась» в два раза: .
Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций (Примеры № 1, 3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи. Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач математики!
И, конечно же, классический пример растяжения / сжатия параболы:
Пример 12
Построить графики функций .
Возьмём рога молодого оленя и вытянем их вверх вдоль оси в два раза: . Затем сожмём вдоль оси ординат в 2 раза:
И снова заметьте, что значения функции увеличиваются в 2 раза, а значения уменьшаются во столько же раз (исключение составляет точка ).
Отпустим в тундру удивлённое животное и продолжим изучать умножение функции на число: . Случаи не представляют интереса, поэтому рассмотрим отрицательные коэффициенты. Сначала распространённый частный случай :
если ФУНКЦИЯ меняет знакна противоположный, то её график отображается симметрично относительно оси абсцисс.
Правило: чтобы построить график функции , нужно график отобразить симметрично относительно оси .
Пример 13
Построить график функции
Отобразим синусоиду симметрично относительно оси :
Ещё более наглядно симметрия просматривается у следующей типовой функции:
Пример 14
Построить график функции
График функции получается путём симметричного отображения графика относительно оси абсцисс:
Функции задают две ветви параболы, которая «лежит на боку». Обратная функция задаёт параболу целиком. С подобными графиками часто приходится иметь дело при нахождении площадей фигур, построении областей интегрирования двойных интегралов и в некоторых других задачах.
При умножении функции на отрицательное число , , построение графика следует выполнить в два этапа: сжатие (или растяжение) вдоль оси ординат, а потом – симметричное отображение относительно оси абсцисс. Конкретные примеры увидим в следующем топике.
Сдвиг графика вверх / вниз вдоль оси ординат
Настала пора дать передышку ногам и сесть в лифт.
Если к ФУНКЦИИ добавляется константа, то происходит сдвиг (параллельный перенос) её графика вдоль оси . Рассмотрим функцию и положительное число :
Правила:
1) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вверх;
2) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вниз.
В отличие от преобразований аргумента, здесь правила работают «в совпадающих направлениях».
Пример 15
Построить графики функций .
В комментариях, думаю, нет особой необходимости:
Построение графикав общем случае осуществляется очевидным образом:
1) График функции растягиваем (сжимаем) вдоль оси . Если множитель «эм» отрицателен, дополнительно осуществляем симметричное отображение растянутого (сжатого) графика относительно оси .
2) Полученный на первом шаге график сдвигаем вверх или вниз в соответствии со значением константы .
Пример 16
Построить график функции
График косинуса (чёрный цвет):
1) растягиваем вдоль оси в 1,5 раза: (синий цвет);
2) сдвигаем вдоль оси на 2 единицы вниз: :
Простой, но весьма распространённый кадр:
Пример 17
Построить график функции
Параболу :
1) отобразим симметрично относительно оси абсцисс: ;
2) сдвинем вдоль оси на 4 единицы вверх: :
Да, конечно, данную кривую легко построить и поточечно, но такие параболы очень часто встречаются в практических заданиях, поэтому весьма полезно сразу представлять, как они расположены.
Аналогичный трехходовой пример с растяжением и симметричным отображением графика относительно оси :
Пример 18
Построить график функции
График экспоненциальной функции :
1) растянем вдоль оси в 2 раза: ;
2) отобразим симметрично относительно оси абсцисс: ;
3) сдвинем вдоль оси на 1 единицу вверх: :
Заметьте, что в результате последнего преобразования горизонтальная асимптота графика тоже «уехала» вверх на 1 единицу. Аналогичный факт мы уже наблюдали при сдвиге гиперболы (см. Пример № 7).
Систематизируем всю информацию:
Общая схема построения графика функции с помощью геометрических преобразований
Рассмотрим функцию , которая «базируется» на некоторой функции . Для многих читателей алгоритм построения графика уже понятен:
– на первом шаге выполняем преобразования, связанные с АРГУМЕНТОМ функции (см. первые два параграфа), в результате чего получаем график функции ;
– на втором шаге выполняем только что рассмотренные преобразования, связанные с самой ФУНКЦИЕЙ, и получаем график .
Завершим самое длинное построение данного урока:
Пример 19 (концовка Примера 10)
Построить график функции
В примере № 10 мы выполнили построение графика , то есть полностью разобрались с аргументом функции. И сейчас осталось выполнить завершающие шаги.
График функции :
4) отобразим симметрично относительно оси : ;
5) сдвинемвдоль оси на 3 единицы вверх: :
На практике, к счастью, построения почти всегда более коротки, например:
– кубическую параболу сдвигаем вдоль оси на 5 единиц вправо и сжимаем вдоль оси в 3 раза.
– график экспоненты отображаем симметрично относительно оси ординат, затем – симметрично относительно оси абсцисс.
– график функции смещаем влево на 5 единиц, затем – вверх на 1 единицу.
И так далее. Некоторые геометрические преобразования можно поменять местами, но это возможно далеко не всегда! Поэтому «чайникам» лучше придерживаться алгоритма, изложенного в начале параграфа.
Весь материал статьи, который носит в бОльшей степени всё-таки справочный характер, потребуется для выполнения чертежей в других задачах, но время от времени на практике рассматриваемое задание встречается отдельно, причём, бывает, в «сыром» виде:
Пример 20
Построить график функции с помощью преобразований графиков элементарных функций
Методику быстрого построения параболы я разобрал на первом уроке о графиках функций, однако здесь по условию необходимо применить вполне определённый способ.
На первом шаге представим функцию в виде . Для этого используем так называемый метод выделения полного квадрата. Советую не пренебрегать задачей, поскольку типовой приём потребуется и в будущем, например, при нахождении интегралов от некоторых дробей.
Идея состоит в том, чтобы искусственно преобразовать функцию ТАК, чтобы воспользоваться одной из формул сокращенного умножения либо .
Начнём преобразования. Коэффициент при выносим за скобку:
Очевидно, что выражение сведётся к формуле . В скобках конструируем :
Таким образом, . Теперь организуем , для этого в скобках прибавим и вычтем :
Последнее слагаемое выносим из скобок:
Используем формулу и суммируем два последних слагаемых:
В целях проверки целесообразно раскрыть скобки и убедиться, что получится исходная функция:
Построим график . Параболу :
1) сдвинем вдоль оси на влево: (синий цвет);
2) вытянем вдоль оси в 2 раза: (малиновый цвет);
3) сдвинем вдоль оси на вверх: (красный цвет):
Рассмотрим ещё один типовой трюк:
Пример 21
Построить график функции с помощью преобразований графиков элементарных функций.
Сначала сведём функцию к виду . Все действия я закомментирую:
(1) В знаменателе выносим –1 за скобки. Это нужно, чтобы аргумент функции представить «в привычном» порядке .
(2) Минус знаменателя поставим перед дробью. В числителе проведём искусственное преобразование – прибавим и вычтем единицу. Это нужно для следующего шага.
(3) Разделим числитель на знаменатель. Возьмите на заметку рассмотренный приём, он используется при интегрировании дробей.
1) сдвинем вправо на 1 единицу: (синий цвет);
2) отобразим симметрично относительно оси абсцисс: (малиновый цвет);
3) сдвинем вдоль оси на единицу вниз: (красный цвет):
Перейдём к заключительной части урока, в которой речь пойдёт о модуле. Хотел её сделать отдельной страничкой или pdf-кой, да потом передумал, чего уж тут мелочиться. Хотя, эта статья далеко не рекордная по количеству букв, солидную часть объема занимают чертежи.
Графики функций с модулем
Для качественного усвоения материала необходимо понимать, что такое модуль
Применение модуля тоже представляет собой геометрическое преобразование графика. Не буду создавать сверхподробный мануал, отмечу только те моменты, которые, с моей точки зрения, реально пригодятся для решения других задач.
Сначала посмотрим, что происходит, когда модуль применяется к АРГУМЕНТУ функции.
Правило: график функции получается из графика функции следующим образом: при график функции сохраняется и эта «сохранившаяся» часть отображается симметрично относительно оси – в левую полуплоскость на промежуток .
Пример 22
Построить график функции
И снова вечная картина:
Согласно правилу, при график сохраняется:
и сохранившаяся часть отображается симметрично относительно оси в левую полуплоскость:
Действительно, функция – чётная, и её график симметричен относительно оси ординат. Поясню детальнее смысл симметрии. Посмотрим на два противоположных значения аргумента, например, на и . А какая разница? Модуль всё равно уничтожит знак «минус»: , то есть значения функции будут располагаться на одной высоте.
Функцию от модуля можно расписать в так называемом кусочном виде по следующему правилу: . В данном случае:
То есть правая часть графика задаётся функцией , а левая часть – функцией (см. Пример 13).
Пример 23
Построить график функции
Аналогично, ветвь «обычной» экспоненты правой полуплоскости отображаем симметрично относительно оси в левую полуплоскость:
Распишем функцию в кусочном виде: , то есть правая ветвь задаётся графиком функции , а левая ветвь графиком .
Модуль не имеет смысл «навешивать» на аргумент чётной функции: и т. п. (проанализируйте, почему).
И, наконец, завершим статью весёлой нотой – применим модуль к САМОЙ ФУНКЦИИ.
Правило: график функции получается из графика функции следующим образом: часть графика , лежащая НАД осью сохраняется, а часть графика , лежащая ПОД осью отображается симметрично относительно данной оси.
Странно, что широко известный график модуля «икс» оказался на 24-й позиции, но факт остаётся фактом =)
Пример 24
Построить график функции
Сначала начертим прямую, известную широкому кругу лиц:
Часть графика, которая ВЫШЕ оси , остаётся неизменной, а часть графика, которая НИЖЕ оси – отображается симметрично в верхнюю полуплоскость:
Модуль функции также раскрывается аналитически в кусочном виде:
Внимание! Эта формула отличается от формулы предыдущего пункта!
В нашем примере: , действительно, правый луч задаётся уравнением , а левый луч – уравнением .
Кстати, – редкий экземпляр, когда можно считать, что модуль применён, как к аргументу: , так и к самой функции: . Изучим более «жизненную» ситуацию:
Пример 25
Построить график функции
Сначала изобразим график линейной функции :
То, что ВЫШЕ оси абсцисс – не трогаем, а то, что НИЖЕ – отобразим симметрично относительно оси в верхнюю полуплоскость:
Согласно формуле , распишем функцию аналитически в кусочном виде: .
Или, упрощая оба этажа: , то есть правый луч задаётся функцией , а левый луч – функцией . Сомневающиеся могут взять несколько значений «икс», выполнить подстановку и свериться с графиком.
На какие функции модуль «не действует»? Модуль бессмысленно применять к неотрицательным функциям. Например: . Экспоненциальная функция и так полностью лежит в верхней полуплоскости: .
Всё возвращается на круги своя, синусом начали, синусом и закончим. Как в старой доброй сказке:
Пример 26
Построить график функции .
Изобразим сами знаете что =)
И снова – то, что находиться в верхней полуплоскости – оставим в покое, а содержимое подвала – отобразим симметрично относительно оси :
Кстати, понятен ли вам неформальный смысл такого симметричного отображения? Модуль «съедает» у отрицательных чисел знак и делает их положительными, именно поэтому «подвальные» точки занимают противоположные места в верхней полуплоскости.
Распишем функцию в кусочном виде:
Решив два простейших школьных неравенства , получаем: , где – любое целое число.
И, как я люблю напутствовать, всё только начинается!