Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Частные производные функции трёх переменныхПродолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных: первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью Частные производные функции двух переменных и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите! Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных. Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных обычно представляет собой некоторую поверхность в нашем трёхмерном пространстве. Функция трёх переменных имеет вид , при этом переменные называются независимыми переменными или аргументами, переменная называется зависимой переменной или функцией. Например: – функция трёх переменных А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет? – Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)? – Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни. – Возможно ли путешествие в прошлое? – Возможно ли путешествие в будущее? – Существуют ли инопланетяне? На любой вопрос можно выбрать один из четырёх ответов: Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью ;-) Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры! Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных. Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного! Пример 1 Найти частные производные первого порядка функции трёх переменных Решение: Нетрудно догадаться – для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом: или – частная производная по «икс»; В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс». Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменные и считаются константами (постоянными числами). А производная любой константы, о, благодать, равна нулю: Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться. (1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет». (2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ. Частная производная . Когда мы находим частную производную по «игрек», то переменные и считаются константами: (1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно. (2) Находим производные, не забывая, что константы. Далее упрощаем ответ. И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменные и считаются константами: Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами. При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь пропущу) Пример 2 Найти частные производные первого порядка функции трёх переменных Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно. Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)? Верный ответ: Наукой это не запрещено. Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений. Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =) Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных. Навёрстываем упущенное: Пример 3 Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка Решение: вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться. Разберём пример последовательно, чётко и понятно. Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной: Это степенная функция со сложным основанием (синусом). По правилу дифференцирования сложной функции: Теперь вспоминаем, что , таким образом: На чистовике, конечно, решение следует оформить так: Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной: Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции: Теперь вспоминаем нашу замену: Таким образом: На чистовике, понятно, оформление должно выглядеть, благообразно: И зеркальный случай с частной производной по «зет» ( – константы): При определенном опыте проведенный анализ можно проводить мысленно. Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле: В данном случае: И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных. Забавный пример для самостоятельного решения: Пример 4 Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите. Такие примеры быстро не решаю даже я. Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни. Верный ответ: Да. Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно скомпилированная Эйнштейном по материалам трудов Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у него Нобелевская премия? В научном мире был нешуточный скандал, и Нобелевский комитет сформулировал заслугу троечника Эйнштейна примерно следующим образом: «За общий вклад в развитие физики». Дальнейшее, что называется, раскрутка и пиар. К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве. Разберём еще пару типовых задач: Пример 5 Найти частные производные первого порядка в точке Решение: Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий: Решаем: (1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): . (2) Используем свойства линейности. (3) И берём оставшиеся производные, не забывая, что – константы. По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную: Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме: Как видите, шаблон решения практически такой же. Вычислим значение найденной частной производной в точке : И, наконец, производная по «зет»: Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке. Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял. Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое? Верный ответ: Нет. Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину. Пример 6 Найти частные производные первого порядка в точке Пример 7 Найти частные производные первого порядка в точке Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока. Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами: Пример 8 Найти частные производные первого порядка функции трёх переменных Решение: Найдем частные производные первого порядка: (1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы . (2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения . (3) С производной сложностей никаких, а вот производная является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм и домножить его на производную от вложения. (4) Думаю, все уже освоились с простейшими примерами вроде – тут у нас «живой» только , производная которого равна Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев: Интереснее с производной по «зет», хотя, всё равно почти то же самое: (1) Выносим константы за знак производной. (2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения. (3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции. Готово. Пример 9 Найти частные производные первого порядка функции трёх переменных Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока. Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом: Возможно ли путешествие в будущее? Верный ответ: Наукой это не запрещено. Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой. Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя. Частные производные второго порядка функции трёх переменныхОбщий принцип нахождения частных производных второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных. Поэтому, если вы хорошо проработали урок Частные производные функции двух переменных, то будет всё очень просто. Для того чтобы найти частные производные второго порядка, сначала необходимо найти частные производные первого порядка или в другой записи: . Частных производных второго порядка девять штук. Первая группа – это вторые производные по тем же переменным: Вторая группа – это смешанные частные производные 2-го порядка, их шесть: Как и для случая функции двух переменных, при решении задач можно ориентироваться на следующие равенства смешанных производных второго порядка: Примечание: строго говоря, это не всегда так На всякий случай несколько примеров, как правильно читать сиё безобразие вслух: Примеры на нахождение частных производных 2-го прядка для функции трёх переменных на практике встречаются реже. Обычно они не очень сложные, но довольно большие по объему. Пример 10 Найти все частные производные первого и второго порядка функции трёх переменных Записать полный дифференциал 2-го порядка – вы его хотели, и вы его получили! :) Решение: сначала найдем частные производные первого порядка: Частные производные второго порядка рекомендую начинать искать со смешанных производных, поскольку это позволит выяснить, а правильно ли вообще найдены производные первого порядка. Берём найденную производную и дифференцируем её по «игрек»: Равенство выполнено. Гуд. Разбираемся со второй парой смешанных производных. Аналогично разбираемся с третьей парой смешанных производных: После проделанных трудов гарантированно можно утверждать, что, во-первых, мы правильно нашли все частные производные 1-го порядка, во-вторых, правильно нашли и смешанные частные производные 2-го порядка. Осталось найти ещё три частные производные второго порядка, вот здесь уже во избежание ошибок следует максимально сконцентрировать внимание: И по горячим пожеланиям землян, составим полный дифференциал второго порядка: Готово. Повторюсь, задание не столько сложное, сколько объемное. Решение можно сократить и сослаться на равенства смешанных частных производных, но в этом случае не будет проверки. Поэтому лучше таки потратить время и найти все производные (к тому же это может потребовать преподаватель), или, в крайнем случае, выполнить проверку на черновике. Пример 11 Найти все частные производные первого и второго порядка функции трёх переменных Это пример для самостоятельного решения. Краткое решение и ответ в конце урока, который подошел к финальному вопросу: – Существуют ли инопланетяне? Верный ответ: Не знаю. Было бы странным, если бы вы ответили «да» или «нет». С одной стороны, откуда вы знаете, что их нет? С другой стороны, даже если вы видели гуманоидов и лично с ними общались, то ответ «да» прозвучит ещё страннее =) Кто правильно ответил на все 5 вопросов, тот, скорее всего, обладает дипломом ФМ или другого естественно-технического факультета. Ну а мне пора садиться в летающую тарелку и возвращаться к себе домой в Туманность Андромеды. Ку. Решения и ответы: Пример 2: Решение: Пример 4: Решение: Найдем частные производные первого порядка. Пример 6: Решение: Вычислим частные производные первого порядка в точке : Пример 7: Решение: Вычислим частные производные первого порядка в точке : Пример 9: Решение: Найдем частные производные первого порядка: Пример 11: Решение: Найдем частные производные первого порядка:
Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? Zaochnik.com – профессиональная помощь студентам, cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5 |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |