Как найти уравнение нормали к графику функции в заданной точке?
На данном уроке мы узнаем, как найти уравнение нормали к графику функции в точке и разберём многочисленные примеры, которые касаются этой задачи. Для качественного усвоения материала нужно понимать геометрический смысл производной и уметь их находить хотя бы на уровне следующих статей:
Перечисленные уроки позволят «чайникам» быстро сориентироваться в теме и поднять свои навыки дифференцирования практически с полного нуля. По существу, сейчас последует развёрнутое продолжение параграфа об уравнении касательной 3-й статьи из вышеприведенного списка. Почему продолжение? Уравнение нормали тесно связано с уравнением касательной. Помимо прочего я рассмотрю задачи о том, как построить уравнения этих линий в ситуациях, когда функция задана неявнолибо параметрически.
Но сначала освежим воспоминания: если функция дифференцируема в точке (т. е. если существует конечная производная ), то уравнение касательной к графику функции в точке можно найти по следующей формуле:
Это самый распространенный случай, с которым мы уже столкнулись на уроке Простейшие задачи с производными. Однако дело этим не ограничивается: если в точке существует бесконечная производная: , то касательная будет параллельна оси и её уравнение примет вид . Дежурный пример: функция с производной , которая обращается в бесконечность вблизи критической точки. Соответствующая касательная выразится уравнением: (ось ординат).
Если же производной не существует (например, производной от в точке ), то, разумеется, не существует и общей касательной.
Как различать последние два случая, я расскажу чуть позже, а пока что вернёмся в основное русло сегодняшнего урока.
Что такое нормаль? Нормалью к графику функции в точке называется прямая, проходящая через данную точку перпендикулярно касательной к графику функции в этой точке (понятно, что касательная должна существовать). Если совсем коротко, нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания.
Этот способ применять можно, но в математическом анализе принято пользоваться готовой формулой, основанной на взаимосвязи угловых коэффициентов перпендикулярных прямых. Если существует конечная и отличная от нуля производная , то уравнение нормали к графику функции в точке выражается следующим уравнением:
Особые случаи, когда равна нулю либо бесконечности мы обязательно рассмотрим, но сначала «обычные» примеры:
Пример 1
Составить уравнения касательной и нормали к графику кривой в точке, абсцисса которой равна .
В практических заданиях часто требуется найти и касательную тоже. Впрочем, это очень только нА руку – лучше будет «набита рука» =)
Решение: первая часть задания хорошо знакома, уравнение касательной составим по формуле:
Получено конечное число и это радует. Подставим и в формулу :
Перебросим наверх левой части, раскроем скобки и представим уравнение касательной в общем виде:
Вторая часть задания ничуть не сложнее. Уравнение нормали составим по формуле:
Избавляемся от трёхэтажности дроби и доводим уравнение до ума: – искомое уравнение.
Ответ:
Здесь можно выполнить частичную проверку. Во-первых, координаты точки должны удовлетворять каждому уравнению:
! Данная проверка оказывается бесполезной, если неверно найдена производная и / или производная в точке . Это «слабое звено» задания – будьте предельно внимательны!
Чертежа по условию не требовалось, но полноты картины ради:
Забавно, но фактически получилась и полная проверка, поскольку чертёж выполнен достаточно точно =) Кстати, функция задаёт верхнюю дугу эллипса.
Следующая задача для самостоятельного решения:
Пример 2
Составить уравнения касательной и нормали к графику функции в точке .
Примерный образец чистового оформления задания в конце урока.
Теперь разберём два особых случая:
1) Если производная в точке равна нулю: , то уравнение касательной упростится:
То есть касательная будет параллельна оси .
Соответственно, нормаль будет проходить через точку параллельно оси , а значит её уравнение примет вид .
2) Если производная в точке существует, но бесконечна: , то, как отмечалось в самом начале статьи, касательная станет вертикальной: . И поскольку нормаль проходит через точку параллельно оси , то её уравнение выразится «зеркальным» образом:
Всё просто:
Пример 3
Составить уравнения касательной и нормали к параболе в точке . Сделать чертёж.
Требование выполнить чертёж я не добавлял – так было сформулировано задание в оригинале. Хотя это редкость.
Решение: составим уравнение касательной .
В данном случае
Казалось бы, расчёты пустяковые, а в знаках запутаться более чем реально:
Таким образом:
Поскольку касательная параллельна оси (Случай № 1), то нормаль, проходящая через ту же точку , будет параллельна оси ординат:
Чертёж – это, конечно же, дополнительные хлопоты, но зато добротная проверка аналитического решения:
Ответ: ,
В школьном курсе математики распространено упрощенное определение касательной, которое формулируется примерно так: «Касательная к графику функции – это прямая, имеющая с данным графиком единственную общую точку». Как видите, в общем случае это утверждение некорректно. Согласно геометрическому смыслу производной, касательной является именно зелёная, а не синяя прямая.
Следующий пример посвящён тому же Случаю № 1, когда :
Пример 4
Написать уравнение касательной и нормали к кривой в точке .
Краткое решение и ответ в конце урока
Случай № 2, в котором на практике встречается редко, поэтому начинающие могут особо не волноваться и с лёгким сердцем пропустить пятый пример. Информация, выделенная курсивом, предназначена для читателей с высоким уровнем подготовки, которые хорошо разобрались с определениями производной и касательной, а также имеют опыт нахождения производной по определению:
Пример 5
Найти уравнения касательной и нормали к графику функции в точке
Решение: в критической точке знаменатель производной обращается в ноль, и поэтому здесь нужно вычислить односторонние производные с помощью определения производной (см. конец статьи Производная по определению): Обе производные бесконечны, следовательно, в точке существует общая вертикальная касательная: Ну, и очевидно, что нормалью является ось абсцисс. Формально по формуле: Для лучшего понимания задачи приведу чертёж: Ответ:
Я рад, что вы не ушли бороздить просторы Интернета, потому что всё самое интересное только начинается! Чтобы осилить материал следующего параграфа, нужно уметь находить производную неявно заданной функции:
Как найти уравнение касательной и уравнение нормали, если функция задана неявно?
Формулы касательной и нормали остаются прежними, но меняется техника решения:
Пример 6
Найти уравнения касательной и нормали к кривой в точке .
Решение: судя по уравнению, это какая-то линия 3-го порядка, какая именно – нас сейчас совершенно не интересует.
В уравнении присутствует зловред , и поэтому перспектива выразить функцию в явном виде выглядит весьма туманной.
Но этого и не требуется! Есть куда более остроумное решение. Уравнение касательной составим по той же формуле .
Из условия известны значения , кстати, не помешает убедиться, что они действительно удовлетворяют предложенному уравнению:
Получено верное равенство, значит, с точкой всё в порядке.
Перепишем результат с более подходящим для нашей задачи обозначением:
На 2-м шаге в найденное выражение производной подставим :
Вот так-то!
Осталось аккуратно разобраться с уравнением:
Составим уравнение нормали:
Ответ:
Готово! А поначалу представлялось всё непросто. Хотя производная здесь, конечно, – место уязвимое. Миниатюра для самостоятельного решения:
Пример 7
Найти уравнение нормали к линии в точке
Хватит уже вымучивать касательную =)
В данном случае легко выяснить, что это окружность центром в точке радиуса и даже выразить нужную функцию . Но зачем?! Ведь найти производную неявно заданной функции на порядок легче! Она тут чуть ли не самая примитивная.
Краткое решение и ответ в конце урока.
Как найти уравнение касательной и уравнение нормали, если функция задана параметрически?
Составить уравнения касательной и нормали к циклоиде , проведенные в точке, для которой .
Чертёж циклоиды можно найти на странице S и V, если линия задана параметрически(в Примере 4 – так получилось, что та статья была создана раньше). И там даже изображена точка касания.
Решение: абсцисса и ордината точки касания рассчитываются непосредственно из параметрических уравнений кривой:
Уравнение касательной составим по обычной формуле с поправкой на несколько другие обозначения:
Уравнение нормали:
Ответ:
В заключение предлагаю познакомиться с ещё одной интересной линией:
Пример 9
Составить уравнение нормали к полукубической параболе , проведенной в точке, для которой .
Это пример для самостоятельного решения. Напоминаю, что графики параметрически заданных функций можно построить, например, с помощью моего расчётного геометрического макета.
Ну а наш урок подошёл к концу, и я надеюсь, что изложенный материал прошёл для вас не по касательной, а нормально =)
Спасибо за внимание и успехов!
Решения и ответы:
Пример 2. Решение: уравнение касательной составим по формуле: В данном случае: Таким образом: Уравнение нормали составим по формуле : Ответ:
Пример 4. Решение: уравнение касательной составим по формуле: В данной задаче: Таким образом: В точке касательная параллельна оси , поэтому соответствующее уравнение нормали: Ответ:
Пример 7. Решение: в данной задаче: . Найдём производную: Или: Подставим в выражение производной : Искомое уравнение нормали: Ответ:
Пример 9. Решение: в данном случае: Найдём производную и вычислим её значение при : Уравнение нормали: Ответ: