Разложение функций в степенные ряды.
Ряд Тейлора. Ряд Маклорена. Примеры решений
Продолжаем рассматривать теорию и практику степенных рядов. Материал несложный, но для его понимания необходимо уже более или менее хорошо ориентировать в теме. Если Вы только-только приступили к изучению рядов или чувствуйте себя чайником, пожалуйста, начните с урока Ряды для чайников. Примеры решений. Далее следует прочитать статью Степенные ряды. Область сходимости ряда, в частности, Вы должны хорошо понимать, что такое степенной ряд и его область сходимости. А для целей сегодняшнего урока потребуется методический материал Таблица разложений некоторых функций в степенные ряды, его можно раздобыть в кладовке Математические формулы и таблицы. По возможности, таблицу лучше распечатать, поскольку она потребуется не только сейчас, но и в оффлайне.
Понятие суммы степенного ряда
Начнем подходить к теме с воспоминаний. Как мы помним, любой числовой ряд может или сходиться, или расходиться. Если числовой ряд сходится, то это значит, что сумма его членов равна некоторому конечному числу:
На уроке Степенные ряды. Область сходимости ряда мы рассматривали уже не числовые, а функциональные и степенные ряды. Возьмём тот самый подопытный степенной ряд, который всем понравился: . В ходе исследования было установлено, что этот ряд сходится при . Если числовые ряды сходятся к ЧИСЛАМ, то к чему же сходятся функциональные и степенные ряды? Правильно подумали. Функциональные ряды сходятся к ФУНКЦИЯМ. В частности, суммой ряда в его области сходимости является некоторая функция :
Еще раз подчеркиваю, что данный факт справедлив только для найденной области , вне этого промежутка степенной ряд будет расходиться.
Чтобы всё стало окончательно понятно, рассмотрим примеры с картинками. Я выпишу простейшее табличное разложение синуса в степенной ряд:
Область сходимости ряда:
(По какому принципу получены сами элементарные табличные разложения, мы рассмотрим чуть позже).
Теперь вспоминаем школьный график синуса :
Вот такая симпатичная синусоида. Хмм…. Где-то я уже это видел….
Теперь фишка. Если начертить график бесконечного многочлена , то получится… та же самая синусоида! То есть, наш степенной ряд сходится к функции . Используя признак Даламбера (см. статью Степенные ряды. Область сходимости ряда), легко проверить, что ряд сходится при любом «икс»: (собственно, поэтому в таблице разложений и появилась такая запись об области сходимости).
А что значит вообще «сходится»? По смыслу глагола – что-то куда-то идёт. Если я возьму первые три члена ряда и начерчу график многочлена пятой степени, то он лишь отдаленно будет напоминать синусоиду. А вот если составить многочлен из первых ста членов ряда: и начертить его график, то он будет с синусоидой практически совпадать (на достаточно длинном промежутке). Чем больше членов ряда – тем лучше приближение. И, как уже отмечалось, график бесконечного многочлена – есть в точности синусоида. Иными словами, ряд сходится к функции при любом значении «икс».
Рассмотрим более печальный пример, табличное разложение арктангенса:
Область сходимости ряда:
Печаль заключается в том факте, что график бесконечного многочлена существует и совпадает с графиком арктангенса только на отрезке (т.е. в области сходимости ряда):
Вне отрезка разложение арктангенса в ряд расходится, и о графике речи не идёт вообще, поскольку каждое значение бесконечного многочлена бесконечно .
Исходя из вышесказанного, можно сформулировать две взаимно обратные задачи:
– найти сумму ряда (функцию) по известному разложению;
– разложить функцию в ряд (если это возможно) и найти область сходимости ряда.
Что проще? Конечно же, разложение – с него и начнём. После чего я рекомендую не затягивать и в ближайшие часы-дни (пока свежи воспоминания) потренироваться в нахождении суммы степенного ряда.
Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
Приступим к увлекательному занятию – разложению различных функций в степенные ряды. Сначала пара формул, затем практические задания.
Если функция в некотором интервале раскладывается в степенной ряд по степеням , то это разложение единственно и задается формулой:
Примечания: надстрочный индекс в последнем слагаемом обозначаетпроизводную «энного» порядка. Вместо буквы «а» в литературе часто можно встретить букву .
Данная формула носит фамилию англичанина Тейлора (ударение на первый слог).
На практике процентах в 95-ти приходится иметь дело с частным случаем формулы Тейлора, когда :
Этот ряд получил известность благодаря шотландцу Маклорену (ударение на второй слог). Разложение Маклорена также называют разложением Тейлора по степеням .
Вернемся к таблице разложений элементарных функций и выведем разложение экспоненциальной функции:
Как оно получилось? По формуле Маклорена:
Рассмотрим функцию , тогда:
Теперь начинаем находить производные в точке : первую производную, вторую производную, третью производную и т.д. Это просто, поскольку при дифференцировании экспонента превращается в саму себя:
И так далее….
Совершенно очевидно, что
Подставляем единицы в формулу Маклорена и получаем наше табличное разложение!
Аналогично можно вывести некоторые другие табличные разложения (но далеко не все выводятся именно так).
Примеры разложения функций в ряд Маклорена
В данном параграфе мы рассмотрим типовую задачу на разложение функции в ряд Маклорена и определении области сходимости полученного ряда. Нет, мучаться с нахождением производных не придется, мы будем пользоваться таблицей.
Пример 1
Разложить функцию в ряд Маклорена. Найти область сходимости полученного ряда.
! Эквивалентная формулировка: Разложить функцию в ряд по степеням
Решение незамысловато, главное, быть внимательным.
Конструируем наш ряд. Плясать начинают, как правило, от функции, разложение которой есть в таблице:
.
В данном случае :
Раскрываем наверху скобки:
Теперь умножаем обе части на «икс»:
В итоге искомое разложение функции в ряд:
Как определить область сходимости? Чем постоянно проводить очевидные рассуждения, проще запомнить: разложения синуса, косинуса и экспоненты сходятся при любом действительном значении (за исключением, конечно, тех случаев, когда, например, – см. комментарии к табличным разложениям). Домножение на «икс» не играет никакой роли в плане сходимости, поэтому область сходимости полученного ряда:
Пример 2
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
Это пример для самостоятельного решения.
Я не стал рассматривать простейшие разложения вроде , или , поскольку это фактически задача в одно действие. В нужные табличные разложения вместо «альфы» необходимо подставить , , и немного причесать полученные ряды. Единственное предостережение – не теряйте по невнимательности степени и знаки.
А сейчас для разнообразия рассмотрим что-нибудь с минусами.
Пример 3
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
В таблице находим похожее разложение:
Трюк прост – перепишем нашу функцию немного по-другому:
Таким образом, и:
Окончательно:
Теперь нужно определить область сходимости. Согласно таблице, ряд сходится при . В данном случае :
Так как квадрат неотрицателен, то при раскрытии модуля знак «минус» просто испаряется:
Исследуем сходимость ряда на концах найденного интервала. Значения , не входят в область определения функции , но как мы видели в Примере 2, в «проблемной» точке САМ РЯД сходиться может. И поэтому от греха подальше лучше выполнить прямую подстановку концов интервала в найденное разложение. При получаем: – расходящийся гармонический ряд. И он же получается при
Таким образом, область сходимости ряда:
Но так бывает далеко не всегда:
Простейшее разложение из учебника сходится ещё в одной точке: . Здесь значение тоже вне игры, а вот при сумма получившегося знакочередующегося ряда в точности равна .
Интересно отметить, что разложение в ряд такого логарифма:
– сходится уже на обоих концах интервала: (при подстановках , получается тот же самый сходящийся ряд )
Таким образом, с логарифмами нужно работать осмотрительно!
Пара примеров для самостоятельного решения:
Пример 4
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
Пляска традиционно начинается от «главной» функции, то есть, начинать нужно с экспоненты.
Пример 5
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
Здесь разложение не такое сложное, но могут возникнуть трудности с нахождением области сходимости полученного ряда.
Полные решения и ответы в конце урока.
Не редкость, когда перед разложением функции в ряд её необходимо предварительно преобразовать. Канонический случай – это разложение функции . Перед тем как ее раскладывать в ряд, необходимо понизить степень с помощью известной тригонометрической формулы: . Решать я этот пример не буду, поскольку он довольно простой, к тому же что-то подобное мы недавно рассмотрели.
Пример 6
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
Смотрим в таблицу и находим наиболее похожее разложение:
Во-первых, вверху должна быть единица, поэтому представляем нашу функцию в виде произведения:
Теперь нам нужно в знаменателе устроить , для этого выносим двойку за скобки:
И сокращаем на два:
В данном случае , таким образом:
В итоге искомое разложение:
Определим область сходимости ряда. Можно пойти длинным и надежным путем – использовать признак Даламберадля полученногостепенного ряда , т.е. найти интервал сходимости и т.д. Но можно поступить проще. В таблице указано, что биномиальный ряд сходится при . В данном случае , поэтому:
Умножаем все части неравенства на :
– интервал сходимости полученного ряда.
Что происходит с рядом на концах интервала?
Таким образом, область сходимости полученного ряда:
Пример 7
Разложить функцию в ряд по степеням . Найти область сходимости ряда.
Указание: предварительно функцию следует упростить, используя свойство логарифмов:
Это пример для самостоятельного решения.
Разложение функций в ряд Маклорена необходимо проводить и в ряде других задач, например, в задаче приближенного вычисления определенного интеграла. Кстати, там, помимо нового материала, можно посмотреть примеры других разложений, которые не поместились в этот урок.
Примеры разложения функций в ряд Тейлора по степеням , когда
Данное задание является более сложным и встречается значительно реже, но всё-таки 2-3 примера не помешают. Пригодится.
Вытащим из чулана общую формулу Тейлора:
Еще раз повторю, что вместо буквы «а» на практике часто можно встретить букву .
В чём сложность разложения функции по степеням при ненулевом значении «а»? Сложность состоит в том, что нам не удастся воспользоваться табличными разложениями, и придётся самостоятельно находить и вычислять производные. Или не придётся. Но сначала разберём универсальный «классический» метод с производными.
Очень хорошо если вы проработали урок Производные высших порядков, впрочем, я постараюсь максимально подробно закомментировать оставшиеся задачи.
И сразу небольшой Пример 8
Разложить функцию в ряд Тейлора по степеням
В данном случае , смотрим на формулу Тейлора, и становится уже всё понятнее.
Теперь предстоит ручная работа по конструированию разложения:
, все производные, начиная с четвёртой производной, будут нулевыми.
Теперь подставляем весь найденный скарб в формулу Тейлора:
Готово. Для проверки можно раскрыть скобки:
Получен исходный многочлен, что и требовалось проверить.
Рассмотрим более содержательные примеры.
Пример 9
Разложить функцию в ряд Тейлора по степеням . Найти область сходимости полученного ряда.
Решение: Используем разложение функции в ряд Тейлора по степеням
Хех, опять предстоит ручная работа….
В данном случае:
Замечаем, что с такими раскладами производные можно находить до бесконечности. Поэтому необходимо уловить некоторую закономерность. Найдем ещё третью производную:
А теперь проанализируем найденные производные:
, , .
Закономерность прослеживается: знаки чередуются, в числителе накручивается факториал, а в знаменателе растёт степень.
Как проверить, правильно ли составлена энная производная? Подставьте в неё значения , , и у вас должны получиться в точности первая, вторая и третья производные. После того, как мы убедились в том, что энная производная составлена правильно, подставляем в неё наше значение:
Теперь осталось все труды подставить в формулу Тейлора и аккуратно провести упрощения:
Далее необходимо найти область сходимости полученного степенного ряда . Это стандартная задача, которую мы многократно прорешивали на уроке Степенные ряды. Область сходимости ряда. Впрочем, из того соображения, что на концах интервала должны сократиться «двойки в степени эн», ответ нетрудно «углядеть» и устно: .
Теперь способ второй. Он основан на замене переменной. Итак, требуется разложить ту же функцию в ряд Тейлора по степеням , и мы проводим замену:
, откуда выражаем – и подставляем в нашу функцию:
при этом общая формула Тейлора превращается в формулу Маклорена:
Таким образом, наша задача свелась к задаче предыдущего параграфа, представим полученную функцию в виде:
и воспользуемся разложением:
., в данном случае :
, после чего вспоминаем о том, что и записываем искомое разложение:
, и проверочка заодно получилась.
Возникает вопрос: а зачем тогда возиться с производными? И ответ здесь такой: замена далеко не всегда приводит к желаемому результату, так, например, она совершенно бесполезна в Примере 8, и ещё много для каких функций. Поэтому главным и основополагающим методом следует считать прямое построение ряда через производные.
Заключительный пример для самостоятельного решения:
Пример 10
Разложить функцию в ряд Тейлора по степеням . Найти область сходимости полученного ряда.
В образце приведены оба способа решения.
Как ваш тонус? Я так и знал, что на высоте! – поэтому самое время потренироваться в нахождении сумм степенных рядов по известным разложениям. Кроме того, на следующем уроке много интересной и... неожиданной информации. Только не злоупотребляйте =)
Желаю успехов!
Решения и ответы:
Пример 2: Решение: используем разложение: . В данном случае
Область сходимости ряда: .
! Примечание: здесь может сложиться впечатление, что из области сходимости ряда следует исключить точку , которая не входит в область определения функции, однако тут речь идёт об области сходимости ряда. А полученный ряд преспокойно сходится в точке – но не к исходной функции, а к изолированному значению: . Интересно отметить, что здесь функция терпит устранимый разрыв: и сумма степенного ряда непрерывна.
Пример 4: Решение: используем разложение: . В данном случае
Конструируем функцию дальше:
Окончательно:
Ряд сходится при
Примечание: в точке ряд сходится не к исходной функции, а к нулю:
Пример 5: Решение: используем частный случай биномиального разложения:
В данном случае Таким образом:
Само по себе разложение не слишком сложное, важно правильно найти область сходимости полученного ряда. Есть длинный путь и есть короткий.
Путь короткий: биномиальный ряд сходится при (см. таблицу).
В данном случае : . Делим все части на 3 и извлекаем из всех частей кубический корень:
– интервал сходимости ряда. Исследуем сходимость нашего ряда на концах найдённого интервала:
при получаем ряд: ,
и на правом конце: Оба числовых ряда расходятся, так как не выполнен необходимый признак сходимости рядов. Таким образом, область сходимости ряда:
Путь длинный (но более надежный и универсальный) состоит в исследовании полученного ряда с помощью признака Даламбера по стандартной схеме, рассмотренной на уроке Степенные ряды. Область сходимости ряда.
Пример 7: Решение: преобразуем функцию:
Используем разложение:
В данном случае
Таким образом:
Или в свёрнутом виде: Найдем область сходимости полученного степенного ряда. Согласно таблице, использованное разложение сходится при . В данном случае , поэтому:
– интервал сходимости исследуемого степенного ряда. Исследуем сходимость ряда на концах найденного интервала: при – расходится;.