Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Наш форум, библиотека и блог mathprofi>>>


Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Примеры решений типовых
задач комплексного анализа

Как найти функцию
комплексной переменной?

Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi.com

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом



  Карта сайта


Дифференциальное уравнение Бернулли. Примеры решений


Предпраздничные новогодние дни предвещают зачеты и экзамены, поэтому в срочном порядке я решил порадовать читателей еще одним уроком по теме Дифференциальные уравнения первого порядка. Речь пойдет о так называемых уравнениях Бернулли, которые нет-нет, да и встречаются в практических работах и контрольных заданиях. Уравнение Бернулли рекомендую изучать только в том случае, если у вас уже есть опыт решения дифференциальных уравнений первого порядка, в особенности, следует хорошо ориентироваться в линейных неоднородных уравнениях вида .

Дифференциальное уравнение Бернулли имеет вид:

Очевидно – уравнение Бернулли по общей структуре напоминает линейное неоднородное уравнение первого порядка.

Характерным признаком, по которому можно определить уравнения Бернулли, является наличие функции «игрек» в степени «эн»: .

Если  или , то уравнение Бернулли превращается в уравнения, которые вы уже должны уметь решать.

Целая степень  может быть как положительной, так и отрицательной (во втором случае получится дробь), кроме того,  может быть обыкновенной дробью, например .

Как и линейное неоднородное уравнение первого порядка, уравнение Бернулли может приходить на новогодний утренник в разных костюмах. Волком:

Зайчиком:

Или белочкой:

Важно, чтобы в уравнении присутствовал персонаж , который, как я только что показал, иногда может маскироваться под корень.

Обратите внимание, что одним из очевидных решений уравнения Бернулли (если ) является решение: . Действительно, если найти  и подставить  в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях, если по условию требуется найти только частное решение, то функция по понятной причине нас не морозит, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять!

Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой.

Пример 1

Найти частное решение  дифференциального уравнения, соответствующее заданному начальному условию.
,

Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе с задачей Коши. Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в двух уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае.

Решение: данный диффур имеет вид , а значит, является уравнением Бернулли

Как решить дифференциальное уравнение Бернулли?

Алгоритм достаточно прост и незамысловат.

На первом шаге нужно избавиться от «игрека» в правой части. Для этого сбрасываем  в низ левой части и проводим почленное деление:

Далее необходимо избавиться от игрека вот в этом слагаемом:

Для этого проводим замену: , то есть меняем дробь с «игреком» на букву «зет».
Находим производную:
.
Если данное действие не понятно, пожалуйста, посмотрите первый параграф урока Производные неявной и параметрически заданной функций.

Смотрим на первое слагаемое:

И что-то подсказывает, что нужно заменить .
Это легко: если , то

Таким образом, в результате проведенной замены  уравнение  превращается в уравнение:

Получено линейное неоднородное уравнение первого порядка. С той лишь разницей, что вместо привычного «игрека» у нас буква «зет».

Вывод: уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка

Я сменю у каждого слагаемого знак, делать это не обязательно, просто запись будет выглядеть стандартнее что ли:

Дальше алгоритм работает по накатанной колее, важно только уметь решать неоднородное уравнение 1-го порядка:

Проведем замену:

Составим и решим систему:

Из первого уравнения найдем :

 – подставим найденную функцию во второе уравнение системы:

Подобные интегралы я ласково называю дурными интегралами, они не столько сложные, сколько творческие – нужно догадаться (хотя бы научным тыком), как их решать.

Данный интеграл берётся по частям:

Творчество присутствует, помимо интегрирования по частям, использован метод подведения функции под знак дифференциала.

Таким образом:

Но это ещё не всё, выполняем обратную замену:
Если изначально было , то обратно будет

В результате получаем общее решение исходного уравнения Бернулли:

Тривиальное решение потерялось (это произошло в самом начале при делении на ) и не вошло в общий интеграл. Однако это обстоятельство нас совершенно не волнует, поскольку по условию требовалось решить только задачу Коши (! заметьте, что если бы условие требовало указать в ответе и общее решение, то его следовало бы дополнить функцией ). Найдем частное решение, удовлетворяющее начальному условию :

Ответ: частное решение:

Для мастодонтов дифференциального исчисления вкратце напоминаю алгоритм проверки дифференциального уравнения:

1) проверяем, выполнено ли начальное условие;
2) берём ответ  и находим производную ;
3) подставляем ответ  и найденную производную  в исходное ДУ – должно получиться верное равенство.

Проверить дифференциальное уравнение Бернулли действительно не всем под силу, так как в большинстве случаев приходится находить трудную производную и выполнять громоздкую подстановку.

Когда я подбирал первый пример для этой статьи, то очень хотелось разобрать распространенное уравнение Бернулли в духе , однако сразу же после замены оно становится до неприличия похоже на Пример 8 урока неоднородные дифференциальные уравнения первого порядка. Поэтому пусть лучше будет что-нибудь необычное.

Но, вы не расстраивайтесь, вот пара более простых примеров для самостоятельного решения:

Пример 2

Найти решение ДУ , удовлетворяющее начальному условию

Пример 3

Найти решение задачи Коши
,

Полные решения и ответы в конце урока.

В третьем примере перед решением целесообразно представить уравнение в стандартном виде: .

Вообще, иногда составители сборников и методичек зашифровывают уравнения до неузнаваемости, например:

Как говорится, сиди студент и разгадывай ребус – какого хрена типа этот диффур. То ли уравнение с разделяющимися переменными, то ли уравнение в полных дифференциалах, то ли еще какое-нибудь уравнение.

Интереснейшая задача и новая информация, о которой я до сих пор не рассказывал:

Пример 4

Найти решение ДУ , соответствующее начальному условию

Корни, куда же без них.

Решение: пожалуйста, классический вид  уравнения Бернулли.

По условию требуется решить только задачу Коши, поэтому ось абсцисс снова идёт лесом.

Сначала убираем «игрек» из правой части, для этого делим каждую часть на :

Теперь с помощью замены нужно избавиться от «игрека» вот в этом слагаемом:

Из вышесказанного следует замена:
Найдем производную:
, откуда выразим:

Таким образом:

Получено линейное неоднородное уравнение, проведем замену:


Составим и решим систему: .

Из первого уравнения найдем :



 – подставим во второе уравнение:




Таким образом: и в результате обратной замены  получаем общий интеграл , из которого легко выразить общее решение:

Найдем частное решение, соответствующее заданному начальному условию :

…Вот тебе и раз! Уравнение  имеет два корня  и в результате получаются… два частных решения? Нет. Когда мы выражали общее решение, то выполнили возведение в квадрат, из-за чего у нас появился посторонний корень. Поэтому начальное условие  лучше подставить непосредственно в общий интеграл :

 – и помещаем этот ноль уже в общее решение :

Легко видеть, что значению  соответствует частный интеграл , и он не удовлетворяет начальному условию .

Вот так-то оно бывает! – в статье об однородных уравнениях мы рассмотрели случаи потери решений, а оказывается, «решение» можно ещё и «приобрести».

Ответ: частное решение  – проверку выполните самостоятельно, она тут устная.

И сейчас ещё один любопытный факт. Семейство кривых  (общий интеграл ДУ) располагается в верхней полуплоскости и касается оси абсцисс в каждой её точке. Образно говоря, множество графиков  (при всех действительных значениях константы) своими точками касания порождает решение , которое, как заправский партизан засело в чаще леса и в общее решение не вошло.

Такое необычное решение называют особым решением дифференциального уравнения.
В общем случае особое решение тоже представляет собой кривую, которая огибает «основное семейство», но в рассмотренном примере оно – есть прямая, которая ассоциируется с «подставкой» под графики функций .

Конец факта. И начало следующих :)

Возможно, некоторые удивились, почему я ничего не рассказал про математика Бернулли. Забыл. Не будем нарушать традиций. Якоб Бернулли почти итальянец, жил в Швейцарии, говорил на пяти языках. В семье Бернулли 9 (!) математиков, причём у некоторых представителей династии есть серьёзные достижения и в области физики. …Пожалуй, этой информации будет достаточно, а то мне в голову стал приходить крайне неэтичный юмор в духе «Якоб, Иоганн – какая студенту разница?» =) …Походил немного по комнате, посмеялся, продолжаю:

Пример 5

Найти общее решение (или общий интеграл) дифференциального уравнения первого порядка.

Немногочисленный пример из моей выборки, когда требуется найти только общее решение. Полное решение и ответ в конце урока.

Мы рассмотрели наиболее распространенные версии уравнения Бернулли – с «игреком» во второй степени и с «игреком» под квадратным корнем. Другие варианты встречаются реже. Разберём пример, когда «игрек» находится в кубе.

Пример 6

Найти общее решение дифференциального уравнения

Решение: данное ДУ является уравнением Бернулли.

Очевидно, что  является  решением этого уравнения.

И только после этой оговорки делим обе части на :

Избавляемся от «игрека» в «полюбившемся» слагаемом, для этого проведем замену:

В результате:

Получено линейное уравнение, проведем замену:

Решим систему:

Из первого уравнения найдем :




 – подставим во второе уравнение:




Таким образом:

Проведём обратную замену: если изначально , то обратно:

В принципе, здесь можно выразить общее решение в виде:
, но, согласитесь, смотрится не очень…, словно Дедушка Мороз подсунул в подарок гнилую мандаринку. Эта фишка уже рассматривалась мной на уроке Однородные дифференциальные уравнения первого порядка. Нет-нет, испорченные продукты питания никому не предлагал =)

Лично я в похожей ситуации почти всегда склоняюсь к тому, чтобы оставить ответ в виде общего интеграла (заодно париться не нужно).

Ответ: общий интеграл: . Ещё одно решение:

Перед кремлёвским салютом рассмотрим заключительный пример с отрицательной степенью.

Пример 7

Найти частное решение дифференциального уравнения
,

Это пример для самостоятельного решения.

Ну вот, мешок с подарками пуст, надеюсь все остались довольны. Хотя, честно, Новый Год не люблю, сегодня вычитал на Анекдоте.ру меткий афоризм: 10 дней праздников обычно проводишь либо без всякой пользы либо с большим вредом.

Отличной вам сессии!

Решения и ответы:

Пример 2. Решение: данное ДУ является уравнением Бернулли. Найдем общее решение.


Проведем замену:

Получено линейное неоднородное уравнение, замена: .



Составим и решим систему:
Из первого уравнения найдем :



 – подставим во второе уравнение:



Таким образом:
Обратная замена:
Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:
Красиво.

Пример 3. Решение:
Данное дифференциальное уравнение является уравнением Бернулли, разделим обе части на :

Проведем замену:


Получено линейное неоднородное уравнение, проведем замену:



Составим и решим систему:
 
Из первого уравнения найдем :



 – подставим во второе уравнение:



Таким образом:

Обратная замена:  
Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 5. Решение: данное уравнение является уравнением Бернулли.
Очевидно, что является решением данного уравнения.


Замена:

В полученном линейном неоднородном уравнении, проведем замену:



Решим систему: .
Из первого уравнения найдем :




 – подставим во второе уравнение:



Таким образом:
Общее решение:
Обратная замена:

Ответ: общее решение ; ещё одно решение:

Пример 7. Решение:
Данное ДУ является уравнением Бернулли.

Проведем замену:

Получено линейное неоднородное уравнение, проведем замену:



Составим и решим систему:
 
Из первого уравнения найдем :



 – подставим во второе уравнение:



Таким образом:

Обратная замена:  
Частное решение, соответствующее начальному условию , можно найти прямо из общего интеграла . Для этого вместо «икса» подставляем ноль, а вместо «игрека» – единицу:

Таким образом, частное решение:

Частное решение также выясняется и более «привычным» способом через общее решение .

Ответ: частное решение:

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?




© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено