Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Высшая математика:

Математика для заочников
Математические формулы,
таблицы и справочные
материалы

Математические сайты
>>> Удобный калькулятор
Геометрия без ошибок
>>> Расчётная программа
Не нашлось нужной задачи?
Сборники готовых решений!

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Жордано-Гаусса
Решение системы уравнений
в различных базисах

Собственные значения
и собственные векторы

Комплексные числа

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производная по определению
Приближенные вычисления
с помощью дифференциала

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Что такое производная?
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

ФНП:

Область определения функции
2-х переменных. Линии уровня

Основные поверхности
Частные производные
Частные производные
функции трёх переменных

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2 порядка
Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?

Комплексный анализ:

Примеры решений типовых
задач комплексного анализа

Как найти функцию
комплексной переменной?

Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей

Отблагодарить автора >>>

Если Вы заметили опечатку, пожалуйста, сообщите мне об этом

Заказать контрольную
Часто задаваемые вопросы
Гостевая книга

Когда нет времени:

Авторские работы на заказ


По школьным предметам.
Подготовка к ЕГЭ

По высшей математике

Помогут разобраться в теме,
подготовиться к экзамену



Как вычислить определенный интеграл
по формуле трапеций и методом Симпсона?


Численные методы – достаточно большой раздел высшей математики и серьезные учебники по данной теме насчитывают сотни страниц. На практике, в контрольных работах традиционно предлагаются для решения некоторые задачи по численным методам, и одной из распространенных задач является – приближенное вычисление определенных интегралов. В этой статье я рассмотрю два метода приближенного вычисления определенного интеграла – метод трапеций и метод Симпсона.

Что нужно знать, чтобы освоить данные методы? Прозвучит забавно, но можно вообще не уметь брать интегралы. И даже вообще не понимать, что такое интегралы. Из технических средств потребуется микрокалькулятор. Да-да, нас ждут рутинные школьные расчёты. А еще лучше – закачайте мой калькулятор-полуавтомат для метода трапеций и метода Симпсона. Калькулятор написан в Экселе и позволит в десятки раз уменьшить время решения и оформления задач. Для экселевских чайников прилагается видеомануал! К слову, первая видеозапись с моим голосом.

Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.

Вычислить определенный интеграл

Всё было бы хорошо, но в данном примере интеграл не берётся – перед вами неберущийся, так называемый интегральный логарифм. А существует ли вообще этот интеграл? Изобразим на чертеже график подынтегральной функции :
Неберущиеся интегралы можно вычислить приближенно с помощью метода трапеций и по формуле Симпсона

Всё нормально. Подынтегральная функция непрерывна на отрезке  и определенный интеграл  численно равен заштрихованной площади. Да вот только одна загвоздка – интеграл не берётся. И в подобных случаях на помощь как раз приходят численные методы. При этом задача встречается в двух формулировках:

1) Вычислить определенный интеграл приближенно, округляя результат до определённого знака после запятой. Например, до двух знаков после запятой, до трёх знаков после запятой и т.д. Предположим, получился приближенный ответ 5,347. На самом деле он может быть не совсем верным (в действительности, скажем, более точный ответ 5,343). Наша задача состоит лишь в том, чтобы округлить результат до трёх знаков после запятой.

2) Вычислить определенный интеграл приближенно, с определённой точностью. Например, вычислить определённый интеграл приближенно с точностью до 0,001. Что это значит? Это значит, что если получен приближенный ответ 5,347, то все цифры должны быть железобетонно правильными. А точнее говоря, ответ 5,347 должен отличаться от истины по модулю (в ту или другую сторону) не более чем на 0,001.

Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:

Метод прямоугольников. Отрезок интегрирования разбивается на несколько частей и строится ступенчатая фигура (гистограмма), которая по площади близка к искомой площади:
Метод прямоугольников

Не судите строго за чертежи, точность не идеальна – они лишь помогают понять суть методов.

В данном примере проведено разбиение отрезка интегрирования  на три отрезка:
. Очевидно, что чем чаще разбиение (больше более мелких промежуточных отрезков), тем выше точность. Метод прямоугольников даёт грубое приближение площади, видимо, поэтому очень редко встречается на практике (припомнил только один практический пример). В этой связи я не буду рассматривать метод прямоугольников, и даже не приведу простую формулу. Не потому, что лень, а по причине принципа моего решебника: что крайне редко встречается в практических задачах, то – не рассматривается.

Метод трапеций. Идея аналогична. Отрезок интегрирования разбивается на несколько промежуточных отрезков, и график подынтегральной функции приближается ломаной линией:
Метод трапеций

Таким образом, наша площадь (синяя штриховка) приближается суммой площадей трапеций (красный цвет). Отсюда и название метода. Легко заметить, что метод трапеций даёт значительно лучшее приближение, чем метод прямоугольников (при одинаковом количестве отрезков разбиения). И, естественно, чем больше более мелких промежуточных отрезков мы рассмотрим, тем будет выше точность. Метод трапеций время от времени встречается в практических заданиях, и в данной статье будет разобрано несколько примеров.

Метод Симпсона (метод парабол). Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Чертеж строить не вижу смысла, поскольку визуально приближение будет накладываться на график функции  (ломаная линия предыдущего пункта – и то практически совпала).

Задача на вычисление определенного интеграла по формуле Симпсона – самая популярное задание на практике. И методу парабол будет уделено значительное внимание.


Как вычислить определенный интеграл методом трапеций?

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где  – функция, непрерывная на отрезке .  Проведём разбиение отрезка  на  равных отрезков:
. При этом, очевидно:  (нижний предел интегрирования) и  (верхний предел интегрирования). Точки  также называют узлами.

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций:
Общая формула трапеций, где:
 – длина каждого из маленьких отрезков или шаг;
 – значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:
Приближение площади трапециями
По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называется шагом.

Сколько будет точек  (узлов разбиения)? Их будет на одну больше, чем количество отрезков:

Таким образом, общая формула трапеций сокращается до приятных размеров:
Формула трапеции для трех отрезков разбиения n=3

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-его знака после запятой.

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади (см. рисунок выше).

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:
Формула трапеций для пяти отрезков разбиения n=5

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:
Таблица для метода трапеций

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем, НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда. В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):
Расчетная таблица для оформления метода трапеций

В результате:

После первичного результата количество отрезков удваивают. В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для  формула трапеций приобретает следующий вид:
Формула трапеций для десяти отрезков разбиения n=10

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:
Расчетная таблица для решения задачи на приближенное вычисление определенного интеграла по формуле трапеций для 10 отрезков разбиения
При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.

В результате:

Теперь рассчитаем, на сколько улучшился результат:

Здесь используем знак модуля, поскольку нас интересует абсолютная разность, а не какой результат больше, а какой – меньше.

Полученная оценка погрешности больше,  чем требуемая точность:

Поэтому необходимо ещё раз удвоить количество отрезков разбиения до , и вычислить уже . Ничего не придумываю, в реальных задачах достаточно часто требуется провести разбиение отрезка на 20 частей. С помощью экселевского калькулятора готовый результат можно получить в считанные секунды: .

Снова оцениваем погрешность:

Полученная оценка погрешности меньше,  чем требуемая точность:

Всё что осталось сделать, округлить последний (наиболее точный) результат  до двух знаков после запятой и записать:

Ответ:  с точностью до 0,01

Пример 3

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до 0,001.

Перед вами опять неберущийся интеграл (почти интегральный косинус). В образце решения на первом шаге проведено разбиение на 4 отрезка, то есть . Полное решение и примерный образец чистового оформления в конце урока.


Как вычислить определенный интеграл по формуле Симпсона?

Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.

И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где  – функция, непрерывная на отрезке .  Проведём разбиение отрезка  на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

На практике отрезков может быть:
два:
четыре:
восемь:
десять:
двадцать:
Другие варианты не припоминаю.

Внимание! Число  понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например,  на два, получая . Запись  лишь обозначает, что количество отрезков чётно. И ни о каких сокращениях речи не идёт

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки  называют узлами.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
Общая формула Симпсонагде:
 – длина каждого из маленьких отрезков или шаг;
 – значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
 – сумма первого и последнего значения подынтегральной функции;
 – сумма членов с чётными индексами умножается на 2;
 – сумма членов с нечётными индексами умножается на 4.

Пример 4

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, опять неберущийся.

Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью. Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.

Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше: . И формула Симпсона принимает весьма компактный вид:
Формула Симпсона для двух отрезков разбиения 2n=2

Вычислим шаг разбиения:

Заполним расчетную таблицу:

Расчетная таблица для метода Симпсона по двум отрезкам разбиения
Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:
Формула Симпсона для четырёх отрезков разбиения 2n=4

Вычислим шаг разбиения:

Заполним расчетную таблицу:
Расчетная таблица для метода Симпсона по четырём отрезкам разбиения
Таким образом:

Оцениваем погрешность:

Погрешность больше требуемой точности: , поэтому необходимо еще раз удвоить количество отрезков: .

Формула Симпсона растёт, как на дрожжах:
Формула Симпсона для восьми отрезков разбиения 2n=8

Вычислим шаг:

И снова заполним расчетную таблицу:
Расчетная таблица для метода Симпсона по восьми отрезкам разбиения

Таким образом:

Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ:  с точностью до 0,001

Пример 5

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков

Это пример для самостоятельного решения. Примерный образец чистового «короткого» оформления решения и ответ в конце урока.

В заключительной части урока рассмотрим еще пару распространенных примеров

Пример 6

Вычислить приближенное значение определенного интеграла   с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Точность вычислений 0,001.

Этот интеграл берётся, правда, новичку взломать его не так-то просто, соответствующий метод решения рассмотрен в примере 5 урока Сложные интегралы. В задачах на приближенное вычисление интеграл не обязан быть непременно неберущимся! Любознательные студенты могут вычислить его точно и оценить погрешность относительно приближенного значения.

Решение: Обратите внимание на формулировку задания: «Точность вычислений 0,001». Смысловой нюанс данной формулировки предполагает, что результаты нужно только округлить до третьего знака после запятой, а не достигнуть такой точности. Таким образом, когда вам предлагается для решения задача на метод трапеций, метод Симпсона, всегда внимательно вникайте в условие! Спешка, как известно, нужна при охоте на блох.

Используем формулу Симпсона:
Формула Симпсона для десяти отрезков разбиения 2n=10

При десяти отрезках разбиения  шаг составляет

Заполним расчетную таблицу:
Расчетная таблица для метода Симпсона по десяти отрезкам разбиения

Таблицу рациональнее сделать двухэтажной, чтобы не пришлось «мельчить» и всё разборчиво вместилось на тетрадный лист.

Вычисления, не ленимся, расписываем подробнее:

Ответ:

И еще раз подчеркну, что о точности здесь речи не идет. На самом деле, ответ может быть не , а, условно говоря, . В этой связи в ответе не нужно машинально приписывать «дежурную» концовку: «с точностью до 0,001»

Пример 7

Вычислить приближенное значение определенного интеграла  с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления проводить с точностью до третьего десятичного знака.

Примерная версия чистового оформления и ответ в конце урока, который подошел к концу.

Для приближенного вычисления определенного интеграл применяются и другие методы. В частности, теория степенных рядов со стандартной задачей Приближенное вычисление определенного интеграла путём разложения подынтегральной функции в ряд. Но это уже материал второго курса.

А сейчас настала пора раскрыть страшную тайну интегрального исчисления. Я создал уже больше десятка уроков по интегралам, и это, так скажем, теория и классика темы. На практике же, в частности, при инженерных расчетах – приблизить объекты реального мира стандартными математическими функциями практически невозможно. Невозможно идеально точно рассчитать, площадь, объем, плотность, к примеру, асфальтового покрытия. Погрешность, пусть с десятого, пусть с сотого знака после запятой – но она всё равно будет. Именно поэтому по приближенным методам вычисления написаны сотни увесистых кирпичей и создано серьёзное программное обеспечение для приближенных вычислений. Классическая же теория интегрального исчисления в действительности применяется заметно реже. Но, кстати, без неё – тоже никуда!

Данный урок не рекорден по объему, но на его создание у меня ушло необычно много времени. Я правил материал и переделывал структуру статьи несколько раз, поскольку постоянно прорисовывались новые нюансы и тонкости. Надеюсь, труды были не напрасны, и получилось вполне логично и доступно.

Всего вам доброго!

Решения и ответы:

Пример 3: Решение: Разбиваем отрезок интегрирования на 4 части:
Тогда формула трапеций принимает следующий вид:
 Формула трапеций для четырёх отрезков разбиения n=4
Вычислим шаг:
Заполним расчетную таблицу:
Расчетная таблица для метода трапеций по четырём отрезкам разбиения

Таким образом:

Удвоим количество отрезков:
Вычислим шаг:
Заполним расчетную таблицу:
Расчетная таблица для метода трапеций по восьми отрезкам разбиения
Таким образом:
Формула трапеций для восьми отрезков разбиения n=8
Оценим погрешность вычислений:
, таким образом, требуемая точность достигнута.
Ответ:  с точностью до 0,001

Пример 5: Решение: 1) Рассмотрим два отрезка разбиения
Вычислим шаг:
Заполним расчетную таблицу:

Таким образом:

2) Рассмотрим четыре отрезка разбиения
Вычислим шаг:
Заполним расчетную таблицу:

Таким образом:

Оценим погрешность:

2) Рассмотрим восемь отрезков разбиения
Вычислим шаг:
Заполним расчетную таблицу:

Таким образом:

Оценим погрешность:

Ответ:  с точностью до 0,0001

Пример 7: Решение: Используем формулу Симпсона:
, где: , ,
В данном случае:

Таким образом:

Ответ:

Автор: Емелин Александр


Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?







© Copyright mathprofi.ru, Александр Емелин, 2010-2014. Копирование материалов сайта запрещено