Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Формула полной вероятности и формулы БайесаНа данном уроке мы рассмотрим важное следствие теорем сложения и умножения вероятностей и научимся решать типовые задачи по теме. Читателям, которые ознакомились со статьёй о зависимых событиях, будет проще, поскольку в ней мы уже по факту начали использовать формулу полной вероятности. Если Вы зашли с поисковика и/или неважно разбираетесь в теории вероятностей (ссылка на 1-й урок курса), то сначала рекомендую посетить указанные страницы. Собственно, продолжаем. Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу. Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна: Эта формула получила название формулы полной вероятности. В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий, (произошло событие и после него наступило событие или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ). Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг):
Куда ни плюнь – везде урна: Задача 1 Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный? Решение: рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти или не произойти в результате осуществления одной из следующих гипотез: Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен, следовательно: Обратите внимание, что перечисленные гипотезы образуют полную группу событий, то есть, по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку: В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению: Во второй урне только белые шары, поэтому в случае её выбора появление чёрного шара становится невозможным: . И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно). По формуле полной вероятности: Ответ: Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами – при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности, где-то события независимы, где-то зависимы, а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения – над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем! Задача 2 В тире имеются 5 различных по точности боя винтовок. Вероятности попадания в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из случайно выбранной винтовки? Краткое решение и ответ в конце урока. В большинстве тематических задач гипотезы, конечно же, не равновероятны: Задача 3 В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки. Решение: в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две: Рассмотрим событие: – стрелок поразит мишень из наугад взятой винтовки. По формуле полной вероятности: Ответ: 0,85 На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком: Решение: по классическому определению: – вероятности выбора винтовки с оптическим и без оптического прицела соответственно. По условию, – вероятности попадания в мишень из соответствующих типов винтовок. По формуле полной вероятности: Ответ: 0,85 Следующая задача для самостоятельного решения: Задача 4 Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы? На всякий случай напомню – чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету – сам чуть не запутался =) Решение в конце урока (оформлено коротким способом) Задачи на формулы БайесаМатериал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез . Как определить вероятность того, что имела место та или иная гипотеза? При условии, что событие уже произошло, вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса: – вероятность того, что имела место гипотеза ; На первый взгляд кажется полной нелепицей – зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть: – это априорные (оцененные до испытания) вероятности. – это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » – с учётом того факта, что событие достоверно произошло. Рассмотрим это различие на конкретном примере: Задача 5 На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии. Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило. Рассмотрим две гипотезы: Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению: Контроль: Рассмотрим зависимое событие: – наудачу взятое со склада изделие будет стандартным. В первой партии 100% – 20% = 80% стандартных изделий, поэтому: – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии, что оно принадлежит 1-й партии. Аналогично, во второй партии 100% – 10% = 90% стандартных изделий и – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии, что оно принадлежит 2-й партии. По формуле полной вероятности: Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло. По формулам Байеса: а) – вероятность того, что выбранное стандартное изделие принадлежит 1-й партии; б) – вероятность того, что выбранное стандартное изделие принадлежит 2-й партии. После переоценки гипотезы , разумеется, по-прежнему образуют полную группу: Ответ: Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех – 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью – вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! – его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону , а вероятность первой гипотезы занижается: . И эта переоценка небезосновательна – ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше! Вы скажете, чистый субъективизм? Отчасти – да, более того, сам Байес интерпретировал апостериорные вероятности как уровень доверия. Однако не всё так просто – в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски – всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил), и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине. Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот – он будет больше «подозревать» 1-й цех и меньше – второй. Предлагаю убедиться в этом самостоятельно: Задача 6 На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось нестандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии. Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей № 5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через . Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!). То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора»; при этом вероятность противоположной гипотезы («это очередные кидалы»), само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов. К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами: Задача 7 Электролампы изготавливаются на трех заводах. 1-й завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом? Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некое произошедшее событие, в данном случае – покупка лампы. Событий прибавилось, и решение удобнее оформить в «быстром» стиле. Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной. Пользуясь исходными данными, переводим проценты в вероятности: Аналогично: – вероятности изготовления бракованной лампы для соответствующих заводов. По формуле полной вероятности: Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло) По формуле Байеса: Ответ: Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась ? Ведь второй завод производит средние по качеству лампы (первый – лучше, третий – хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод № 2 выпустил самое большое количество ламп, то на него (по меньшей мере, субъективно) и пеняют: «скорее всего, эта бракованная лампа именно оттуда». Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись: Контроль: , что и требовалось проверить. К слову, о заниженных и завышенных оценках: Задача 8 В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что: а) он был подготовлен очень хорошо; Проведите вычисления и проанализируйте результаты переоценки гипотез. Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий (особенно это касается экзаменов в 1-м семестре). Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж). Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе – с многочисленными пересдачами и балансировкой на грани вылета. Что и говорить, репутация – это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией. Да, байесовский подход в известной степени субъективен, но… так устроена жизнь! Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения: Задача 9 Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором – 8%, в третьем – 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Решение: в отличие от Задач № 5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение: Пусть – доля деталей, выпускаемая третьим цехом. По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет . Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: . Составим и решим уравнение: Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу «Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию. За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха – вероятности выйдут такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею: Из условия находим: По формуле полной вероятности: Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса: В данном случае пришлось упрощать четырёхэтажную дробь, что в задачах на формулы Байеса приходится делать довольно часто. Но для данного урока я как-то так случайно подобрал примеры, в которых многие вычисления можно провести без обыкновенных дробей. Коль скоро в условии нет пунктов «а» и «бэ», то ответ лучше снабдить текстовыми комментариями: Ответ: – вероятность того, что извлечённая из контейнера деталь окажется бракованной; – вероятность того, что извлечённую бракованную деталь выпустил 3-й цех. Как видите, задачи на формулу полной вероятности и формулы Байеса достаточно простЫ, и, наверное, по этой причине в них так часто пытаются затруднить условие, о чём я уже упоминал в начале статьи. Дополнительные примеры есть в файле с готовыми решениями на Ф.П.В. и формулы Байеса, кроме того, наверное, найдутся желающие более глубоко ознакомиться с данной темой в других источниках. А тема действительно очень интересная – чего только стОит один парадокс Байеса, который обосновывает тот житейский совет, что если у человека диагностирована редкая болезнь, то ему имеет смысл провести повторное и даже два повторных независимых обследования. Казалось бы, это делают исключительно от отчаяния… – а вот и нет! Но не будем о грустном. Везения в главном! Решения и ответы: Задача 2: Решение: рассмотрим гипотезы , состоящие в том, что стрелок выберет 1-ю, 2-ю, 3-ю, 4-ю и 5-ю винтовку соответственно. Выбор любой винтовки равновозможен, следовательно: . Задача 4: Решение: из условия находим – вероятности того, что двигатель работает на холостом ходу, в нормальном и форсированном режимах соответственно. Задача 6: Решение: рассмотрим две гипотезы: По формулам Байеса: Задача 8: Решение: всего: 3 + 19 + 3 = 25 студентов в группе. По классическому определению: Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? Zaochnik.com – профессиональная помощь студентам, cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5 |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |