Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Наш форум, библиотека и блог: mathprofi.com

Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Производная комплексной
функции. Примеры решений

Как найти функцию
комплексной переменной?

Конформное отображение
Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом


  Карта сайта


Теория вероятностей. Базовые термины и понятия

Мама мыла раму


Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – Теория вероятностей и математическая статистика. Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В. Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы, но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (да-да, теорем!), пожалуйста, обратитесь к учебнику.

Для тех, кто хочет научиться решать задачи в считанные дни, создан ускоренный курс в pdf-формате (по материалам сайта). Ну и прямо сейчас, не откладывая дело в долгую папку, мы приступаем к изучению тервера и матстата – следуйте за мной!

Рекомендуемый порядок изучения темы:

Эта статья;
Задачи по комбинаторике. Примеры решений;
Задачи на классическое определение вероятности;
Геометрическое определение вероятности;
Теоремы сложения и умножения вероятностей;
Зависимые события;
Формула полной вероятности и формулы Байеса;
Независимые испытания и формула Бернулли;
Локальная и интегральная теоремы Лапласа;
Статистическое определение вероятности.

Для начала хватит =)

По мере прочтения статей полезно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике размещены соответствующие pdf-ки с примерами решений. Также заметную помощь окажут ИДЗ 18.1-18.2 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

Кроме того, на складе математических формул и таблиц есть удобные справочные материалы – Основные формулы комбинаторики и Основные формулы теории вероятностей. Откройте - закачайте - распечатайте!

Итак, дорожные указатели расставлены, и мы ступаем на тропу теории вероятностей, которую неоднократно просили осветить посетители сайта.

Первое и очень важное. Что изучает эта наука? Многим в голову наверняка пришли мысли вроде «вероятность дождя велика», «вероятность выигрыша в лотерею мала», «орёл и решка выпадают с вероятностью 50 на 50» и т. п. Но тогда сразу возникает вопрос, при чём здесь наука? Пожалуйста, прямо сейчас возьмите в руки монету и скажите, какой гранью она выпадет после броска? …Совсем не похоже на теорию – скорее какое-то гадание….

И действительно, обывательское понимание вероятности больше смахивает на некое предсказание, часто с изрядной долей мистицизма и суеверий. Теория же вероятностей изучает вероятностные закономерности массовых однородных случайных событий. То есть у неё нет цели что-либо угадать, например, результат броска той же монеты в единичном эксперименте. Однако если одну и ту же монету в одинаковых условиях подбрасывать сотни и тысячи раз, то будет прослеживаться чёткая закономерность, описываемая вполне жёсткими законами.

Другой пример. Вокруг каждого из нас летают молекулы воздуха. Некоторые из них обладают высокой, некоторые средней, а некоторые – низкой скоростью. Не имеет смысла угадывать скорость отдельно взятых молекул; но их массовый учёт находит самое широкое применение в теоретических и прикладных физических исследованиях. Обратите внимание, что самолёты «умеют» летать, газовые и паровые котлы обычно не взрываются, а чайники при кипении не скачут по кухне. За многими и многими, казалось бы, обыденными фактами и событиями кроются серьёзные вероятностно-статистические расчёты.

Или пример попроще. Если вы приобретёте лотерейный билет, то вряд ли что-то выиграете и совсем невероятно, что сорвёте крупный куш. Но организатор лотереи даже при случайном розыгрыше тиража (извлечение пронумерованных шариков и т. п. либо если участники сами угадывают номера) гарантированно и с высокой точностью знает, сколько билетов выиграют/проиграют, и, понятно, остаётся в прибыли. Лотереи часто называют обманом, однако парадокс состоит в том, что эта гарантия строго обоснована теорией; рАвно, как и житейская фраза «всё равно ничего не выиграю». Думаю, теперь все поняли правильный способ заработка на лотереях =) Впрочем, мы ещё вернёмся к «секретам» выигрыша в рулетку и различные лотереи.

Да, кстати подумайте ещё над одной насущной задачей: многие из нас за жизнь сдают десятки экзаменов, и практически всегда имеет место следующая ситуация: часть вопросов студент знает (либо заготовлены шпоры), а часть вопросов – не знает (либо плавает как мастер спорта). Наступает день «X»: утро, коридор с 10-15 однокурсниками и дверь, за которой на столе лежит полный комплект билетов. В каком случае вероятнее сдать экзамен – если идти «в первых рядах», «в серединке» или если зайти в аудиторию в числе последних? …Изучаем теорию вероятностей!

Сначала разбираемся с основными терминами, которые ниже по тексту я буду выделять жирным курсивом. Обращаю ваше внимание, что это ИМЕННО ТЕРМИНЫ, а не «просто слова»!


События. Виды событий

Одно из базовых понятий тервера уже озвучено выше – это событие. События бывают достоверными, невозможными и случайными.

Достоверным называют событие, которое в результате испытания (осуществления определенных действий, определённого комплекса условий) обязательно произойдёт. Например, в условиях земного тяготения подброшенная монета непременно упадёт вниз.

Невозможным называют событие, которое заведомо не произойдёт в результате испытания. Пример невозможного события: в условиях земного тяготения подброшенная монета улетит вверх.

И, наконец, событие называется случайным, если в результате испытания оно может, как произойти, так и не произойти, при этом должен иметь место принципиальный критерий случайности: случайное событие – есть следствие случайных факторов, воздействие которых предугадать невозможно или крайне затруднительно. Пример: в результате броска монеты выпадет «орёл».  В рассмотренном случае случайные факторы – это форма и физические характеристики монеты, сила/направление броска, сопротивление воздуха и т. д.

Подчёркнутый критерий случайности очень важен – так, например, карточный шулер может очень ловко имитировать случайность и давать выигрывать жертве, но ни о каких случайных факторах, влияющих на итоговый результат, речи не идёт.

Любой результат испытания называется исходом, который, собственно и представляет собой появление определённого события. В частности, при подбрасывании монеты возможно 2 исхода (случайных события): выпадет орёл, выпадет решка. Естественно, подразумевается, что данное испытание проводится в таких условиях, что монета не может встать на ребро или, скажем, зависнуть в невесомости.

События (любые) обозначают большими латинскими буквами  либо теми же буквами с подстрочными индексами, например: . Исключение составляет буква , которая зарезервирована под другие нужды.

Запишем следующие случайные события:

 – в результате броска монеты выпадет «орёл»;
 – в результате броска игральной кости (кубика) выпадет 5 очков;
 – из колоды будет извлечена карта трефовой масти (по умолчанию колода считается полной).

Да, события прямо так и записывают в практических задачах, при этом в уместных случаях удобно использовать «говорящие» подстрочные индексы (хотя можно обойтись и без них).

Следует в третий раз подчеркнуть, что случайные события обязательно удовлетворяют вышеприведённому критерию случайности. В этом смысле снова показателен 3-й пример: если из колоды изначально удалить все карты трефовой масти, то событие  становится невозможным. Наоборот, если испытателю известно, что, например, дама треф лежит снизу, то он при желании может сделать событие  достоверным =) Таким образом, в данном примере предполагается, что карты хорошо перемешаны и их рубашки неразличимы, т. е. колода не является краплёной. Причём, здесь под «крапом» понимаются даже не «умелые руки», ликвидирующие случайность вашего выигрыша, а видимые дефекты карт. Например, рубашка той же дамы треф может быть грязной, порванной, заклеенной скотчем… блин, какое-то пособие для начинающего чикатило получилось =)

Таким образом, при розыгрыше важного жребия всегда есть смысл невзначай посмотреть, а не одинаковы ли грани монеты ;-)

Другая важная характеристика событий – это их равновозможность. Два или бОльшее количество событий называют равновозможными, если ни одно из них не является более возможным, чем другие. Например:

выпадение орла или решки при броске монеты;
выпадение 1, 2, 3, 4, 5 или 6 очков при броске игрального кубика;
извлечение карты трефовой, пиковой, бубновой или червовой масти из колоды.

При этом предполагается, что монета и кубик однородны и имеют геометрически правильную форму, а колода хорошо перемешана и «идеальна» с точки зрения неразличимости рубашек карт.

Могут ли быть те же события не равновозможными? Могут! Например, если у монеты или кубика смещён центр тяжести, то гораздо чаще будут выпадать вполне определённые грани. Как говорится, ещё одна лазейка для мошенников. События  – извлечение трефы, пики, червы или бубны тоже равновозможны. Однако равновозможность легко нарушит фокусник, который, тасуя колоду (даже «идеальную»), ловко подсмотрит и спрячет в рукаве, например, туза треф. Здесь становится менее возможным, что оппоненту будет сдана трефа, и, главное, менее возможно, что будет сдан туз.

Тем не менее, в рассмотренных трёх случаях при потере равновозможности всё же сохраняется случайность событий.

Совместные и несовместные события. Противоположные события.
Полная группа событий

События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий  является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой вверху. Например:

 – в результате броска монеты выпадет орёл;
 – в результате броска монеты выпадет решка.

Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными.

Противоположные события легко формулируются из соображений элементарной логики:

 – в результате броска игрального кубика выпадет 5 очков;
 – в результате броска игрального кубика выпадет число очков, отличное от пяти.

Либо пять, либо не пять – третьего не дано, т. е. события несовместны и противоположны.

Аналогично – или трефа или карта другой масти:

 – из колоды будет извлечена карта трефовой масти;
 – из колоды будет извлечена пика, черва или бубна.

Множество несовместных событий образуют полную группу событий, если в результате отдельно взятого испытания обязательно появится одно из этих событий. Очевидно, что любая пара противоположных событий (в частности, примеры выше) образует полную группу. Однако в различных задачах с одним и тем же объектом могут фигурировать разные события, например, для игрального кубика характерно рассмотрение следующего набора:

 – в результате броска игрального кубика выпадет 1 очко;
 – … 2 очка;
 – … 3 очка;
 – … 4 очка;
 – … 5 очков;
 – … 6 очков.

События  несовместны (поскольку появление какой-либо грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания непременно появится одно из этих шести событий).

Ещё одно важное понятие, которое нам скоро потребуется – это элементарность исхода (события). Если совсем просто, то элементарное событие «нельзя разложить на другие события». Например, события  элементарны, но событие  не является таковым, так как подразумевает выпадение 1, 2, 3, 4 или 6 очков (включает в себя 5 элементарных исходов).

В примере с картами события  (извлечение трефы, пики, червы или бубны соответственно) несовместны и образуют полную группу, но они неэлементарны. Если считать, что в колоде 36 карт, то каждое из перечисленных событий включает в себя 9 элементарных исходов. Аналогично – события  (извлечение шестёрки, семёрки, …, короля, туза) несовместны, образуют полную группу и неэлементарны (каждое включает в себя 4 исхода).

Таким образом, элементарным исходом здесь считается лишь извлечение какой-то конкретной карты, и, разумеется, 36 несовместных элементарных исходов тоже образуют полную группу событий.

Совместные события менее значимы с точки зрения решения практических задач, но обходить их стороной не будем. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого. Например:

 – из колоды карт будет извлечена трефа;
 – из колоды карт будет извлечена семёрка.

Если быть совсем лаконичным, одно не исключает другого.

Понятие совместности охватывает и бОльшее количество событий:

 – завтра в 12.00 будет дождь;
 – завтра в 12.00 будет гроза;
 – завтра в 12.00 будет солнце.

Ситуация, конечно, довольно редкая, но совместное появление всех трёх событий в принципе не исключено. Следует отметить, что перечисленные события совместны и попарно, т. е. может быть только ливень с грозой или грибной дождик, или погромыхает неподалёку на фоне ясного неба.

Алгебра событий

Мужайтесь, будет и матан =)

Пожалуйста, запомните ВАЖНЕЙШЕЕ ПРАВИЛО, без которого освоить тервер просто нереально:

Операция сложения событий означает логическую связку ИЛИ,
а операция умножения событийлогическую связку И.

1) Суммой двух событий  и  называется событие  которое состоит в том, что наступит или событие  или событие  или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие  или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие  состоит в том, что произойдёт хотя бы одно из событий , а если события несовместныто одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События  (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие  (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие  (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие  заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие  – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие  состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие  состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий, а именно:

– или будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.

То есть событие  включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий  и  называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение  означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение  подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

 – на 1-й монете выпадет орёл;
 – на 1-й монете выпадет решка;
 – на 2-й монете выпадет орёл;
 – на 2-й монете выпадет решка.

Тогда:
– событие  состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орёл;
– событие  состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
– событие  состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка;
– событие  состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события  несовместны (т. к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет). Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И, а сложение – ИЛИ. Таким образом, сумму  легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл»

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания, когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

 – в 1-м броске выпадет 4 очка;
 – во 2-м броске выпадет 5 очков;
 – в 3-м броске выпадет 6 очков.

Тогда событие  состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)


Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =)  Существует несколько подходов к её определению:

Классическое определение вероятности;
Геометрическое определение вероятности;
Статистическое определение вероятности.

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения. Вероятность некоторого события  обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:

 –  вероятность того, что в результате броска монеты выпадет «орёл»;
 – вероятность того, что в результате броска игральной кости выпадет 5 очков;
 – вероятность того, что из колоды будет извлечена карта трефовой масти.

Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий  и их вероятностей  в пользу следующей стилистики::

 – вероятность того, что в результате броска монеты выпадет «орёл»;
 – вероятность того, что в результате броска игральной кости выпадет 5 очков;
 – вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности:

Вероятностью наступления события  в некотором испытании называют отношение , где:

 – общее число всех равновозможных, элементарных исходов этого испытания, которые образуют полную группу событий;

 – количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу, таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен.  Событию  благоприятствует  исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться  элементарных равновозможных исходов, образующих полную группу, а событию  благоприятствует единственный  исход (выпадение пятёрки). Поэтому: .

Особое внимание обращаю на третий пример. Здесь будет некорректным сказать «раз в колоде 4 масти, то вероятность извлечения трефы ». В определении речь идёт об элементарных исходах, поэтому правильный порядок рассуждений таков: всего в колоде 36 карт (несовместные элементарные исходы, образующие полную группу), из них 9 карт трефовой масти (кол-во элементарных исходов, благоприятствующих событию ); по классическому определению вероятности: . Именно так!

Вероятности можно выразить и в процентах, например: вероятность выпадение орла равна , выпадения пятёрки , извлечения трефы , но в теории вероятностей ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы, и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие  является невозможным, если  – достоверным, а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

 – из урны будет извлечён красный шар;
 – из урны будет извлечён зелёный шар.

Общее количество исходов: . Событию  благоприятствуют все возможные исходы , следовательно, , то есть данное событие достоверно. Для 2-го же события благоприятствующие исходы отсутствуют , поэтому , то есть событие  невозможно.

Особый интерес представляют события, вероятность наступления которых чрезвычайно мала. Хоть такие события и являются случайными, для них справедлив следующий постулат:

в единичном испытании маловозможное событие не произойдёт.

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна  0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта. 

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице. Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

 – в результате броска монеты выпадет орёл;
 – в результате броска монеты выпадет решка.

По теореме:  

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными. А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события  противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность  того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:

События , как отмечалось выше, равновозможны – и теперь мы можем сказать, что равновероятны. Вероятность выпадения любой грани кубика равна :

Ну и на закуску колода: поскольку нам известна вероятность  того, что будет извлечена трефа, то легко найти вероятность того, что будет извлечена карта другой масти:

Заметьте, что рассмотренные пары событий  и  не равновероятны, как оно чаще всего и бывает.

В упрощенной версии записи решения вероятность противоположного события стандартно обозначается строчной буквой . Например, если  – вероятность того, что стрелок попадёт в цель, то  – вероятность того, что он промахнётся.

! В теории вероятностей буквы  и  нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют?
– Что такое случайность и равновозможность события?
– Как вы понимаете термины совместность/несовместность событий?
– Что такое полная группа событий, противоположные события?
– Что означает сложение и умножение событий?
– В чём суть классического определения вероятности?
– Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками Задачи по комбинаторике и Задачи на классическое определение вероятности.

Успехов!

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


© Copyright  Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте