Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Гипербола и параболаПереходим ко второй части статьи о линиях второго порядка, посвященной двум другим распространённым кривым – гиперболе и параболе. Если вы зашли на данную страницу с поисковика либо ещё не успели сориентироваться в теме, то рекомендую сначала изучить первый раздел урока, на котором мы рассмотрели не только основные теоретические моменты, но и познакомились с эллипсом. Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =) Гипербола и её каноническое уравнениеОбщая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение. Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса, здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ». Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции …. У гиперболы две симметричные ветви. У гиперболы две асимптоты. Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии: Пример 4 Построить гиперболу, заданную уравнением Решение: на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20: Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной: И только после этого провести сокращение: Выделяем квадраты в знаменателях: Готово. Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись: Итак, воспользуемся плодом наших трудов – каноническим уравнением : Как построить гиперболу?Существует два подхода к построению гиперболы – геометрический и алгебраический. Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии: 1) Прежде всего, находим асимптоты. Если гипербола задана каноническим уравнением , то её асимптотами являются прямые . В нашем случае: . Данный пункт обязателен! Это принципиальная особенность чертежа, и будет грубой ошибкой, если ветви гиперболы «вылезут» за свои асимптоты. 2) Теперь находим две вершины гиперболы, которые расположены на оси абсцисс в точках . Выводится элементарно: если , то каноническое уравнение превращается в , откуда и следует, что . Рассматриваемая гипербола имеет вершины 3) Ищем дополнительные точки. Обычно хватает двух-трёх. В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для 1-й координатной четверти. Методика точно такая же, как и при построении эллипса. Из канонического уравнения на черновике выражаем: Напрашивается нахождение точек с абсциссами : 4) Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях. Аккуратно соединим соответствующие точки у каждой ветви гиперболы: Техническая трудность может возникнуть с иррациональным угловым коэффициентом , но это вполне преодолимая проблема. Отрезок называют действительной осью гиперболы, В нашем примере: , и, очевидно, если данную гиперболу повернуть вокруг центра симметрии и/или переместить, то эти значения не изменятся. Определение гиперболы. Фокусы и эксцентриситетУ гиперболы, точно так же, как и у эллипса, есть две особенные точки , которые называются фокусами. Не говорил, но на всякий случай, вдруг кто неверно понимает: центр симметрии и точки фокуса, разумеется, не принадлежат кривым. Общая концепция определения тоже похожа: Гиперболой называют множество всех точек плоскости, абсолютное значение разности расстояний до каждой из которых от двух данных точек – есть величина постоянная, численно равная расстоянию между вершинами этой гиперболы: . При этом расстояние между фокусами превосходит длину действительной оси: . Если гипербола задана каноническим уравнением , то расстояние от центра симметрии до каждого из фокусов рассчитывается по формуле: . Для исследуемой гиперболы : Разбираемся в определении. Обозначим через расстояния от фокусов до произвольной точки гиперболы: Сначала мысленно передвигайте синюю точку по правой ветви гиперболы – где бы мы ни находились, модуль (абсолютное значение) разности между длинами отрезков будет одним и тем же: Если точку «перекинуть» на левую ветвь и перемещать её там, то данное значение останется неизменным. Знак модуля нужен по той причине, что разность длин может быть как положительной, так и отрицательной. Кстати, для любой точки правой ветви (поскольку отрезок короче отрезка ). Для любой точки левой ветви ситуация ровно противоположная и . Более того, ввиду очевидного свойства модуля безразлично, что из чего вычитать. Удостоверимся, что в нашем примере модуль данной разности действительно равен расстоянию между вершинами. Мысленно поместите точку в правую вершину гиперболы . Тогда: , что и требовалось проверить. Эксцентриситетом гиперболы называют отношение . Так как расстояние от центра до фокуса больше расстояния от центра до вершины: , то эксцентриситет гиперболы всегда больше «единицы»: . Для данного примера: . По аналогии с эллипсом, зафиксировав значение , желающие могут провести самостоятельный анализ и проверку следующих фактов: При увеличении эксцентриситета ветви гиперболы «распрямляются» к оси . Если же значение эксцентриситета приближается к единице, то ветви гиперболы «сплющиваются» к оси . Равносторонняя гиперболаНа практике часто встречается гипербола с равными полуосями. Если , то каноническое уравнение заметно упрощается: А вместе с ним упрощаются и уравнения асимптот: Прямые пересекаются под прямым углом и «справедливо» делят координатную плоскость на 4 одинаковые части, в двух из которых находятся ветви кривой. Образно говоря, равносторонняя гипербола «идеально сложена», то есть и не растянута и не сплющена. Так как , то , следовательно, эксцентриситет любой равносторонней гиперболы равен: . Предлагаю закрепить теорию и практические навыки миниатюрной задачей: Пример 5 Построить гиперболу и найти её фокусы. Это пример для самостоятельного решения. Кто пропустит, тот пропустит многое ;-) Решение и чертёж в конце урока. Начнём тревожить беззаботное существование нашей кривой: Поворот вокруг центра и параллельный перенос гиперболыВернёмся к демонстрационной гиперболе . Что произойдёт, если в полученном уравнении поменять значения полуосей: ? Для эллипса данный трюк означал поворот на 90 градусов. Но здесь всё иначе! Уравнение определяет совершенно другую гиперболу. Ну, хотя бы обратите внимание на иные вершины: . Теперь рассмотрим уравнение , которое очевидно тоже задаёт гиперболу. Однако к исходному уравнению оно также не имеет никакого отношения! Это предыдущая гипербола, повёрнутая на 90 градусов, с вершинами на оси ординат. И, наконец, оставшийся случай задаёт нашу гиперболу , повернутую на 90 градусов. Как быть, если в практической задаче встретилась такая неканоническая запись? Если требуется только построить кривую, то строим её в предложенном виде. Это довольно просто. Уравнения асимптот гиперболы обладают обратными угловыми коэффициентами: Поскольку оси «поменялись ролями», то вершины будут расположены на оси ординат в точках . Выразим верхнюю ветвь гиперболы: И найдём несколько дополнительных точек: Выполним чертёж: Однако по возможности всё-таки лучше осуществить поворот на 90 градусов и переписать уравнение в канонической форме. Для этого следует поменять местами значения полуосей и переставить «минус» к переменной «игрек»: . ! Примечание: строгий теоретический подход предполагает поворот координатных осей, а не самой линии. При необходимости оформляйте решение по аналогии с соответствующим примечанием предыдущего урока. Параллельный перенос. Уравнение задаёт гиперболу с действительной полуосью «а», мнимой полуосью «бэ» и центром в точке . Так, например, гипербола имеет центр симметрии в точке . Асимптоты, само собой, переместились вместе с гиперболой, их уравнения отыскиваются по формулам: Полуоси и расстояние от фокусов до центра симметрии остались прежними, а вот координаты фокусов изменились с учётом параллельного переноса: Параллельный перенос гиперболы доставил заметно больше хлопот, чем параллельный перенос эллипса, смотрим на картинку: После таких трудов, уравнение трогать бессмысленно, но если таки просят, то придётся…. В нестрогом варианте: «Приведём уравнение гиперболы к каноническому виду путём параллельного переноса в начало координат: ». Или в строгом – с параллельным переносом системы координат началом в точку На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду. Парабола и её каноническое уравнениеСвершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться: Пример 6 Построить параболу Решение: вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу. В целях сократить запись вычисления проведём «под одной гребёнкой» : Для компактной записи результаты можно было свести в таблицу. Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое определение параболы:Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку . Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром, который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением . Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение. Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси Эксцентриситет любой параболы равен единице: Поворот и параллельный перенос параболыПарабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой. ! Примечание: как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях. 1) Поворот вокруг вершины. Если в уравнении присутствует знак «минус»: , то это означает разворот параболы на 180 градусов относительно своего канонического положения. А если в уравнении переменные «поменялись местами»: , то это означает поворот канонической параболы на 90 градусов против часовой стрелки. На следующем чертеже изображены графики кривых : Таким образом, все параболы, с которыми мы обычно работаем – не каноничны! Я очень хотел «уложить на бок» классическую параболу и разобрать каноническое уравнение , но, к сожалению, у неё достаточно малый фокальный параметр , и чертеж с точкой фокуса , директрисой был бы крайне невразумителен. 2) Параллельный перенос. Без всякой оригинальности. Уравнение задаёт ту же параболу с вершиной в точке . По моим наблюдениям, во многих задачах матана очень популярен частный случай – когда каноническая парабола сдвигается влево или вправо по оси абсцисс. Ну, и как дополнительная опция, разворачивается, если при переменной «икс» есть знак «минус». Соответствующее творческое задание для самостоятельного решения: Пример 7 Построить параболу . Привести уравнение линии к каноническому виду, найти фокус и уравнение директрисы. Как лучше действовать? По условию требуется построить параболу . Именно такую – в неканоническом виде! Поэтому в первой части задачи следует представить уравнение в виде , что позволит сразу определить вершину. Затем по образцу Примера 6 нужно провести поточечное построение линии, работая с уравнениями . Вторая часть задания предполагает приведение уравнения к каноническому виду. Проанализируйте равенство – есть ли поворот, есть ли параллельный перенос? После того, как выясните каноническую запись , необходимо найти фокус параболы и уравнение её директрисы. Обратите внимание, что в контексте условия это, вероятнее всего, нужно сделать в каноническом положении! Ну, а наша обзорная экскурсия подошла к концу, и я надеюсь, что у вас не возникло и не возникнет трудностей с тремя атлантами темы – эллипсом, гиперболой и параболой. Предлагаю узнать новый теоретический материал и закрепить практические навыки на уроке Задачи с линиями 2-го порядка. Желаю успехов! Решения и чертежи: Пример 5: Решение: данная гипербола является равносторонней, поэтому имеет асимптоты . Действительная полуось , значит, вершины расположены в точках . Найдём дополнительные точки: И в общем случае – график обратной пропорциональности представляет собой равностороннюю гиперболу, уравнение которой можно привести к каноническому виду . Пример 7: Решение: преобразуем уравнение: Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? Zaochnik.com – профессиональная помощь студентам, cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5 |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |