Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Наш форум, библиотека и блог: mathprofi.com

Высшая математика:

Математика для заочников

Математические формулы,
таблицы и другие материалы

Книги по математике

Математические сайты

+-*/^ Удобный калькулятор

+ «Дробовик»   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?
Повторяем школьный курс

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Как найти рациональные корни
многочлена? Схема Горнера

Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Квадратичные формы
Как привести квадратичную
форму к каноническому виду?

Ортогональное преобразование
квадратичной формы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

Как исследовать сходимость
несобственного интеграла?

Признаки сходимости несобств.
интегралов второго рода

Абсолютная и условная
сходимость несобств. интеграла

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

ТФКП для начинающих
Как построить область
на комплексной плоскости?

Линии на С. Параметрически
заданные линии

Отображение линий и областей
с помощью функции w=f(z)

Предел функции комплексной
переменной. Примеры решений

Производная комплексной
функции. Примеры решений

Как найти функцию
комплексной переменной?

Конформное отображение
Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение
Система случайных величин
Зависимые и независимые
случайные величины

Двумерная непрерывная
случайная величина

Зависимость и коэффициент
ковариации непрерывных СВ

Математическая статистика:

Математическая статистика
Дискретный вариационный ряд
Интервальный ряд
Мода, медиана, средняя
Показатели вариации
Формула дисперсии, среднее
квадратическое отклонение,
коэффициент вариации

Асимметрия и эксцесс
эмпирического распределения

Статистические оценки
и доверительные интервалы

Оценка вероятности
биномиального распределения

Оценки по повторной
и бесповторной выборке

Статистические гипотезы
Проверка гипотез. Примеры
Гипотеза о виде распределения
Критерий согласия Пирсона

Группировка данных. Виды группировок. Перегруппировка
Общая, внутригрупповая
и межгрупповая дисперсия

Аналитическая группировка
Комбинационная группировка
Эмпирические показатели
Как вычислить линейный
коэффициент корреляции?

Уравнение линейной регрессии
Проверка значимости линейной
корреляционной модели

Модель пАрной регрессии.
Индекс детерминации

Нелинейная регрессия. Виды и
примеры решений

Коэффициент ранговой
корреляции Спирмена

Коэф-т корреляции Фехнера
Уравнение множественной
линейной регрессии

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi

Обратная связь:

Часто задаваемые вопросы
Гостевая книга Отблагодарить автора >>>

Заметили опечатку / ошибку?
Пожалуйста, сообщите мне об этом


  Карта сайта


Комплексные числа для чайников

Не занимайтесь комплексными числами после комплексного обеда


На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числами и немного рубить в тригонометрии. Впрочем, если что позабылось,
я напомню.

Урок состоит из следующих параграфов:

На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся любимой темой,... после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».

Сначала «поднимем» информацию об «обычных» школьных числах. В математике они называются множеством действительных чисел и обозначаются буквой  (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Множество действительных чисел, числовая прямая

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.


Понятие комплексного числа

Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве.

Если хотите, комплексное число – это двумерное число. Оно имеет вид , где  и  – действительные числа,  – так называемая мнимая единица. Число  называется действительной частью () комплексного числа , число  называется мнимой частью () комплексного числа .

 – это ЕДИНОЕ  ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:  или переставить мнимую единицу:  – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке

Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:
Комплексная плоскость
Как упоминалось выше, буквой  принято обозначать множество действительных чисел. Множество же комплексных чисел принято обозначать «жирной» или утолщенной буквой . Поэтому на чертеже следует поставить букву , обозначая тот факт, что у нас комплексная плоскость.

Комплексная плоскость состоит из двух осей:
 – действительная ось
 – мнимая ось

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать масштаб, отмечаем:

ноль;

единицу по действительной оси;

мнимую единицу  по мнимой оси.

Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .

Да чего тут мелочиться, рассмотрим чисел десять.

Построим на комплексной плоскости следующие комплексные числа:
, ,
, ,
, , ,

Как изобразить комплексные числа на комплексной плоскости
По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.

Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось  обозначает в точности множество действительных чисел , то есть на оси сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел  является подмножеством множества комплексных чисел .

Числа , ,  – это комплексные числа с нулевой мнимой частью.

Числа , ,  – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси .

В числах , , ,  и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не  чертят, потому что они сливаются с осями.


Алгебраическая форма комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел

С алгебраической формой комплексного числа мы уже познакомились,  – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.

Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.

Сложение комплексных чисел

Пример 1

Сложить два комплексных числа ,

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:

Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.

Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса:  – от перестановки слагаемых сумма не меняется.

Вычитание комплексных чисел

Пример 2

Найти разности комплексных чисел  и , если ,

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .

Рассчитаем вторую разность:

Здесь действительная часть тоже составная:

Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3

Найти произведение комплексных чисел  ,

Очевидно, что произведение следует записать так:

Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что  и быть внимательным.

Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Я распишу подробно:

Надеюсь, всем было понятно, что

Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках.

Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .

В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.

Деление комплексных чисел

Для выполнения этого действия нам понадобится понятие сопряжённого комплексного числа. Число  называют сопряжённым для числа  (и наоборот). Таким образом,  – это пара сопряженных (по отношению друг к другу) чисел.

Пример 4

Даны комплексные числа , . Найти частное .

Составим частное:

Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю число .

Cмотрим на наш знаменатель: . В знаменателе находится число вида , поэтому сопряженным для него является , то есть .

Согласно правилу, знаменатель нужно умножить на , и чтобы ничего не изменилось, домножить числитель на то же самое число :

Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться бородатой формулой  (помним, что  и не путаемся в знаках!!!).

Распишу подробно:

Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .

В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:

Редко, но встречается такое задание:

Пример 5

Дано комплексное число . Записать данное число в алгебраической форме (запоминайте, кто не успел запомнить: ).

Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю число, то есть на . Далее пользуемся формулой :
– обращаю внимание, что исходное и полученное – это одно и то же число.

Пример 6

Даны два комплексных числа , . Найти их сумму, разность, произведение и частное.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что


Тригонометрическая и показательная форма комплексного числа

В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы, методический материал можно найти на странице Математические формулы и таблицы. Без таблиц далеко не уехать.

Любое комплексное число (кроме нуля)  можно записать в тригонометрической форме:
, где  – это модуль комплексного числа, а  – аргумент комплексного числа. Не разбегаемся, всё проще, чем кажется.

Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что :
Модуль и аргумент комплексного числа

Модулем комплексного числа  называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа  стандартно обозначают:  или

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений «а» и «бэ».

Примечание: модуль комплексного числа представляет собой обобщение понятия модуля действительного числа, как расстояния от точки до начала координат.

Аргументом комплексного числа  называется угол  между положительной полуосью действительной оси  и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: .

Рассматриваемый принцип фактически схож с полярными координатами, где полярный радиус и полярный угол однозначно определяют точку.

Аргумент комплексного числа  стандартно обозначают:  или

Из геометрических соображений получается следующая формула для нахождения аргумента:
. Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-й и не 4-й координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7

Представить в тригонометрической форме комплексные числа: , , , .
Выполним чертёж:
Комплексные числа на осях

На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа:

Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол.

1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что  (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме: .

Ясно, как день, обратное проверочное действие:

2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что  (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: .

Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что  (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: .

Проверка:

4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Аргумент можно записать двумя способами: Первый способ:  (270 градусов), и, соответственно: . Проверка:

Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла:  (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить, что  и  – это один и тот же угол.

Таким образом, запись принимает вид:

Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче!

В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...».  Это действительно очевидно и легко решается устно.

Перейдем к рассмотрению более распространенных случаев. Как я уже отмечал, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число . При этом возможны три варианта (их полезно переписать к себе в тетрадь):

1) Если  (1-я и 4-я координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле .

2) Если  (2-я координатная четверть), то аргумент нужно находить по формуле .

3) Если  (3-я координатная четверть), то аргумент нужно находить по формуле .

Пример 8

Представить в тригонометрической форме комплексные числа: , , , .

Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить. Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета.

Эх, сто лет от руки ничего не чертил, держите:
Как найти аргумент комплексного числа в зависимости от координатной четверти

Как всегда, грязновато получилось =)

Я представлю в тригонометрической форме числа  и , первое и третье числа будут для самостоятельного решения.

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку  (случай 2), то  – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
 – число  в тригонометрической форме.

Расскажу о забавном способе проверки. Если вы будете выполнять чертеж на клетчатой бумаге в том масштабе, который у меня (1 ед. = 1 см), то можно взять линейку и измерить модуль в сантиметрах. Если есть транспортир, то можно непосредственно по чертежу измерить и угол.

Перечертите чертеж в тетрадь и измерьте линейкой расстояние от начала координат до числа . Вы убедитесь, что действительно . Также транспортиром можете измерить угол и убедиться, что действительно .

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку  (случай 1), то  (минус 60 градусов).

Таким образом:
 – число  в тригонометрической форме.

А вот здесь, как уже отмечалось, минусы не трогаем.

Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол  – это в точности табличный угол  (или 300 градусов):
 – число  в исходной алгебраической форме.

Числа  и  представьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока.

В конце параграфа кратко о показательной форме комплексного числа.

Любое комплексное число (кроме нуля)  можно записать в показательной форме:
, где  – это модуль комплексного числа, а  – аргумент комплексного числа.

Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде .

Например, для числа  предыдущего примера у нас найден модуль и аргумент: , . Тогда данное число в показательной форме запишется следующим образом: .

Число  в показательной форме будет выглядеть так:

Число  – так:

 И т.д.

Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .


Возведение комплексных чисел в степень

Начнем со всеми любимого квадрата.

Пример 9

Возвести в квадрат комплексное число

Здесь можно пойти двумя путями, первый способ это переписать степень как произведение множителей  и перемножить числа по правилу умножения многочленов.

Второй способ состоит в применении известной школьной формулы сокращенного умножения :

Для комплексного числа легко вывести свою формулу сокращенного умножения:
. Аналогичную формулу можно вывести для квадрата разности, а также для куба суммы и куба разности. Но эти формулы более актуальны для задач комплексного анализа, поэтому на данном уроке я воздержусь от подробных выкладок.

Что делать, если комплексное число нужно возвести, скажем, в 5-ю, 10-ю или 100-ю степень? Ясно, что в алгебраической форме проделать такой трюк практически невозможно, действительно, подумайте, как вы будете решать пример вроде ?

И здесь на помощь приходит тригонометрическая форма комплексного числа и, так называемая, формула Муавра: Если комплексное число представлено в тригонометрической форме , то при его возведении в натуральную степень  справедлива формула:

Данная формула следует из правила умножения комплексных чисел, представленных в тригонометрической форме: чтобы найти произведение чисел ,  нужно перемножить их модули и сложить аргументы:

Аналогично для показательной формы: если , то:

Просто до безобразия.

Пример 10

Дано комплексное число , найти .

Что нужно сделать? Сначала нужно представить данное число в тригонометрической форме. Внимательные читатели заметили, что в Примере 8 мы это уже сделали:

 

Тогда, по формуле Муавра:

Упаси вас, не нужно считать на калькуляторе , а вот угол в большинстве случае следует упростить. Как упростить? Образно говоря, нужно избавиться от лишних оборотов. Один оборот составляет  радиан или 360 градусов. Выясним сколько у нас оборотов в аргументе . Для удобства делаем дробь правильной: , после чего становится хорошо видно, что можно убавить один оборот: . Надеюсь всем понятно, что  и  – это один и тот же угол.

Таким образом, окончательный ответ запишется так:

Любители стандартов везде и во всём могут переписать ответ в виде:
 (т.е. убавить еще один оборот и получить значение аргумента в стандартном виде).

Хотя  – ни в коем случае не ошибка.

Пример 11

Дано комплексное число , найти . Полученный аргумент (угол) упростить, результат представить в алгебраической форме.

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Отдельная разновидность задачи возведения в степень – это возведение в степень чисто мнимых чисел.

Пример 12

Возвести в степень комплексные числа , ,

Здесь тоже всё просто, главное, помнить знаменитое равенство.

Если мнимая единица возводится в четную степень, то техника решения такова:

Если мнимая единица возводится в нечетную степень, то «отщипываем» одно «и»,  получая четную степень:

Если есть минус (или любой действительный коэффициент), то его необходимо предварительно отделить:

Пример 13

Возвести в степень комплексные числа ,

Это пример для самостоятельного решения.


Извлечение корней из комплексных чисел.
Квадратное уравнение с комплексными корнями

Наконец-то. Меня всю дорогу подмывало привести этот маленький примерчик:

Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень –  можно! А точнее, два корня:


Действительно ли найденные корни являются решением уравнения ? Выполним проверку:


Что и требовалось проверить.

Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: . Заметьте, что это сопряжённые комплексные числа (числа вида , в нашем случае с нулевой действительной частью).

Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно: , , , ,  и т.д. Во всех случаях получается два сопряженных комплексных корня.

О том, как извлечь квадратный корень из комплексного числа с ненулевой мнимой частью, я расскажу чуть позже, а пока нечто знакомое:

Пример 14

Решить квадратное уравнение

Вычислим дискриминант:

Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!

По известным формулам получаем два корня:

 – сопряженные комплексные корни

Таким образом, уравнение  имеет два сопряженных комплексных корня: ,

Нетрудно понять,что в поле комплексных чисел «школьное» квадратное уравнение всегда при двух корнях! И вообще, любое уравнение вида  имеет ровно  комплексных корней, часть которых (или все) могут быть действительными.

Простой пример для самостоятельного решения:

Пример 15

Найти корни уравнения  и разложить квадратный двучлен на множители.

Разложение на множители осуществляется опять же по стандартной школьной формуле. Но на этом тема не закрыта! Совсем скоро вы будете уверенно решать квадратные уравнения с комплексными коэффициентами (которые не являются действительными).

Как извлечь корень из произвольного комплексного числа?

Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при  получается квадратный корень . Что касается именно квадратного корня, то он успешно извлекается и «алгебраическим» методом, который рассмотрен на уроке Выражения, уравнения и системы уравнений с комплексными числами. Но то позже – здесь и сейчас мы познакомимся с универсальным способом, пригодным для произвольного «эн»:

Уравнение вида  имеет ровно  корней , которые можно найти по формуле:
, где  – это модуль комплексного числа ,  – его аргумент, а параметр  принимает значения:

Пример 16

Найти корни уравнения

Перепишем уравнение в виде

В данном примере ,  , поэтому уравнение будет иметь два корня:  и .
Общую формулу можно сразу немножко детализировать:
,

Теперь нужно найти модуль и аргумент комплексного числа :

Число  располагается в первой четверти, поэтому:

Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.

Еще более детализируем формулу:
,

На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось.

Подставляя в формулу значение , получаем первый корень:

Подставляя в формулу значение , получаем второй корень:

Ответ: ,

При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.

Следует отметить, что на практике аргумент подкоренного числа может оказаться не так «хорош», как в рассмотренном примере. В этом случае для извлечения квадратного корня лучше использовать упомянутый выше «алгебраический» метод.

И напоследок рассмотрим задание-«хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .

Пример 17

Найти корни уравнения , где

Сначала представим уравнение в виде :

Если , тогда

Обозначим  привычной формульной буквой: .
Таким образом, требуется найти корни уравнения

В данном примере , а значит, уравнение имеет ровно три корня: , ,
Детализирую общую формулу:
,

Найдем модуль и аргумент комплексного числа :

Число  располагается во второй четверти, поэтому:

Еще раз детализирую формулу:
,
Корень удобно сразу же упростить:

Подставляем в формулу значение  и получаем первый корень:

Подставляем в формулу значение  и получаем второй корень:

Подставляем в формулу значение  и получаем третий корень:

Очень часто полученные корни требуется изобразить графически:
Извлечение корня из комплексного числа. Изобразить корни на комплексной плоскости
Как выполнить чертеж?
Сначала на калькуляторе находим, чему равен модуль корней   и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.

Теперь берем аргумент первого корня  и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром  и ставим на чертеже точку .

Берем аргумент второго корня  и переводим его в градусы: . Отмеряем транспортиром  и ставим на чертеже точку .

По такому же алгоритму строится точка

Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж.

Уравнения  четвертого   и высших порядков встречаются крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами.

Чтобы закрепить материал и узнать много нового, обязательно приходите на практикум Выражения, уравнения и системы уравнений с комплексными числами – будет жарко!

Решения и ответы:

Пример 6: Решение:



Пример 8: Решение:
Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку  (случай 1), то . Таким образом:  – число  в тригонометрической форме.

Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку  (случай 3), то . Таким образом:  – число  в тригонометрической форме.

Пример 11: Решение: Представим число в тригонометрической форме:  (это число  Примера 8). Используем формулу Муавра :

Пример 13: Решение:

Пример 15: Решение:


,
Разложим квадратный двучлен на множители:

Автор: Емелин Александр


 Блог Емелина Александра

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


© Copyright  Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте