Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Наш форум и библиотека: + подписка на новости проекта!

Высшая математика:

Математика для заочников
Математические формулы,
таблицы и справочные
материалы

Математические сайты
>>> Удобный калькулятор

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi.com   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

Примеры решений типовых
задач комплексного анализа

Как найти функцию
комплексной переменной?

Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины

Отблагодарить автора >>>

Если Вы заметили опечатку, пожалуйста, сообщите мне об этом

Заказать контрольную
Часто задаваемые вопросы
Гостевая книга

Кнопка для сайта: Высшая математика – просто и доступно!

Когда нет времени:

Авторские работы на заказ

По школьным предметам.
Подготовка к ЕГЭ

По высшей математике
и физике

Помогут разобраться в теме,
подготовиться к экзамену



  Карта сайта



Как найти уравнения касательной плоскости и нормали
к поверхности в заданной точке?


Сегодня на уроке я расскажу вам об одном популярном приложении дифференциального исчисления функции двух переменных, а именно, о том, что вы видите в заголовке. По существу, это «пространственный аналог» задачи нахождения касательной и нормали к графику функции  одной переменной, и поэтому никаких трудностей возникнуть не должно.

Начнём с базовых вопросов: ЧТО ТАКОЕ касательная плоскость и ЧТО ТАКОЕ нормаль? Многие осознают эти понятия на уровне интуиции. Самая простая модель, приходящая на ум – это шар, на котором лежит тонкая плоская картонка. Картонка расположена максимально близко к сфере и касается её в единственной точке. Кроме того, в точке касания она закреплена торчащей строго вверх иголкой.

В теории существует довольно остроумное определение касательной плоскости. Представьте произвольную поверхность  и принадлежащую ей точку . Очевидно, что через точку  проходит много пространственных линий, которые принадлежат данной поверхности. У кого какие ассоциации? =) …лично я представил осьминога. Предположим, что у каждой такой линии существует пространственная касательная в точке .

Определение 1: касательная плоскость к поверхности в точке  – это плоскость,  содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку .

Определение 2: нормаль к поверхности в точке  – это прямая, проходящая через данную точку перпендикулярно касательной плоскости.

Просто и изящно. Кстати, чтобы вы не померли со скуки от простоты материала, чуть позже я поделюсь с вами одним изящным секретом, который позволяет РАЗ И НАВСЕГДА забыть о зубрёжке различных определений.

С рабочими формулами и алгоритмом решения познакомимся прямо на конкретном примере. В подавляющем большинстве задач требуется составить и уравнение касательной плоскости, и уравнения нормали:

Пример 1

Найти уравнения касательной плоскости и нормали к поверхности  в точке .

Решение: если поверхность задана уравнением  (т.е. неявно), то уравнение касательной плоскости к данной поверхности в точке  можно найти по следующей формуле:

Особое внимание обращаю на необычные частные производные  – их не следует путать с частными производными неявно заданной функции (хотя поверхность задана неявно). При нахождении этих производных нужно руководствоваться правилами дифференцирования функции трёх переменных, то есть, при дифференцировании по какой-либо переменной, две другие буквы считаются константами:

Не отходя от кассы, найдём частную производную в точке:

Аналогично:

Это был самый неприятный момент решения, в котором ошибка если не допускается, то постоянно мерещится. Тем не менее, здесь существует эффективный приём проверки, о котором я рассказывал на уроке Производная по направлению и градиент.

Все «ингредиенты» найдены и теперь дело за аккуратной подстановкой с дальнейшими упрощениями:

 – общее уравнение искомой касательной плоскости.

Настоятельно рекомендую проконтролировать и этот этап решения. Сначала нужно убедиться, что координаты точки касания  действительно удовлетворяют найденному уравнению:

 – верное равенство.

Теперь «снимаем» коэффициенты  общего уравнения плоскости и проверяем их на предмет совпадения либо пропорциональности с соответствующими значениями . В данном случае пропорциональны. Как вы помните из курса аналитической геометрии,  – это вектор нормали касательной плоскости, и он же – направляющий вектор нормальной прямой. Составим канонические уравнения нормали по точке  и направляющему вектору :

В принципе, знаменатели можно сократить на «двойку», но особой надобности в этом нет

Ответ:

Уравнения не возбраняется обозначить какими-нибудь буквами, однако, опять же – зачем? Здесь и так предельно понятно, что к чему.

Следующие два примера для самостоятельного решения. Небольшая «математическая скороговорка»:

Пример 2

Найти уравнения касательной плоскости и нормали к поверхности  в точке .

И задание, интересное с технической точки зрения:

Пример 3

Составить уравнения касательной плоскости и нормали к поверхности  в точке

 в точке .

Тут есть все шансы не только запутаться, но и столкнуться с трудностями при записи канонических уравнений прямой. А уравнения нормали, как вы, наверное, поняли, принято записывать именно в таком виде. Хотя, по причине забывчивости либо незнания некоторых нюансов более чем приемлема и параметрическая форма.

Примерные образцы чистового оформления решений в конце урока.

В любой ли точке поверхности существует касательная плоскость? В общем случае, конечно же, нет. Классический пример – это коническая поверхность   и точка  – касательные в этой точке непосредственно образуют коническую поверхность, и, разумеется, не лежат в одной плоскости. В неладах легко убедиться и аналитически: .

Другим источником проблем является факт несуществования какой-либо частной производной в точке. Однако это ещё не значит, что в данной точке нет единой касательной плоскости.

Но то была, скорее, научно-популярная, нежели практически значимая информация, и мы возвращаемся к делам насущным:

Как составить уравнения касательной плоскости и нормали в точке,
если поверхность задана явной функцией ?

Перепишем её в неявном виде :

 и по тем же принципам найдём частные производные:

Таким образом, формула касательной плоскости  трансформируется в следующее уравнение:

, и соответственно, канонические уравнения нормали:

Как нетрудно догадаться,  – это уже «настоящие» частные производные функции двух переменных в точке , которые мы привыкли обозначать буквой «зет» и находили 100500 раз.

Заметьте, что в данной статье достаточно запомнить самую первую формулу, из которой в случае необходимости легко вывести всё остальное (понятно, обладая базовым уровнем  подготовки). Именно такой подход следует использовать в ходе изучения точных наук, т.е. из минимума информации надо стремиться «вытаскивать» максимум выводов и следствий. «Соображаловка» и уже имеющиеся знания в помощь! Этот принцип полезен ещё и тем, что с большой вероятностью спасёт в критической ситуации, когда вы знаете очень мало.

Отработаем «модифицированные» формулы парой примеров:

Пример 4

Составить уравнения касательной плоскости и нормали к поверхности  в точке .

Небольшая тут накладка получилась с обозначениями – теперь буква  обозначает точку плоскости , но что поделать – такая уж популярная буква….

Решение: уравнение искомой касательной плоскости составим по формуле:

Вычислим значение функции в точке :

Вычислим частные производные 1-го порядка в данной точке:

Таким образом:

аккуратно, не спешим:

Запишем канонические уравнения нормали в точке :

Ответ:

И заключительный пример для самостоятельного решения:

Пример 5

Составить уравнения касательной плоскости и нормали к поверхности  в точке .

Заключительный – потому, что фактически все технические моменты я разъяснил и добавить особо нечего. Даже сами функции, предлагаемые в данном задании, унылы и однообразны – почти гарантированно на практике вам попадётся «многочлен», и в этом смысле Пример №2 с экспонентой смотрится «белой вороной». Кстати, гораздо вероятнее встретить поверхность, заданную уравнением  и это ещё одна причина, по которой функция  вошла в статью «вторым номером».

И напоследок обещанный секрет: так как же избежать зубрёжки определений? (я, конечно, не имею ввиду ситуацию, когда студент что-то лихорадочно зубрит перед экзаменом)

Определение любого понятия/явления/объекта, прежде всего, даёт ответ на следующий вопрос: ЧТО ЭТО ТАКОЕ? (кто/такая/ такой/такие). Осознанно отвечая на данный вопрос, вы должны постараться отразить существенные признаки, однозначно идентифицирующие то или иное понятие/явление/объект. Да, поначалу это получается несколько косноязычно, неточно и избыточно (препод поправит =)), но со временем развивается вполне достойная научная речь.

Потренируйтесь на самых отвлечённых объектах, например, ответьте на вопрос: кто такой Чебурашка? Не так-то всё просто ;-)  Это «сказочный персонаж с большими ушами, глазами и коричневой шерстью»? Далеко и очень далеко от определения – мало ли существует персонажей с такими характеристиками…. А вот это уже гораздо ближе к определению: «Чебурашка – это персонаж, придуманный писателем Эдуардом Успенским в 1966 г, который …(перечисление основных отличительных признаков)». Обратите внимание, как грамотно начата статья о Чебурашке в Википедии – с понятия, кто это такой.

Кроме того, в прикладных областях особую важность приобретает второй вопрос: ЗАЧЕМ ЭТО НУЖНО? Например, та или иная команда языка программирования. В подобных определениях должен обязательно содержаться ответ на этот вопрос.

Однако ответ желательно найти в любом случае. Ну, с нашими примерами всё понятно, Чебурашка нужен, чтобы развлекать детей, а касательные плоскости и нормали – чтобы радовать взрослых =)

Эту статью я написал за один-единственный день (величайшая редкость), и надеюсь, она вам понравилась!

Традиционные решения и ответы:

Пример 2: Решение: уравнение касательной плоскости к поверхности  в точке  составим по формуле:

Вычислим частные производные в точке :

Таким образом:

(умножили обе части на –5)

 – уравнение искомой касательной плоскости.
Запишем уравнения нормали к поверхности в точке :

 – канонические уравнения искомой нормали.
Ответ:

Пример 3: Решение: преобразуем уравнение:

Вычислим частные производные в точке :

Запишем уравнение касательной плоскости к данной поверхности в точке :

Запишем канонические уравнения нормали в точке :

Ответ:  – уравнение искомой касательной плоскости;
 – уравнения искомой нормали.

Пример 5: Решение: используем формулу:


Вычислим частные производные в точке :

Таким образом, уравнение касательной плоскости к поверхности в точке :

Уравнения нормали:

Ответ:

Автор: Емелин Александр


Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Качественные работы без плагиата – Zaochnik.com


© Copyright mathprofi.ru, Александр Емелин, 2010-2017. Копирование материалов сайта запрещено