Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи
Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах, кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости. Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.
Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:
Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.
Обозначения: плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве. Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.
В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .
Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.
Для опытных читателей приведу меню быстрого доступа:
Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.
Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.
А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.
В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:
Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.
Рассмотрим простейшие уравнения плоскостей:
Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.
Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .
Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .
Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси
Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .
Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .
Завершаем обзор: плоскость проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.
И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.
Как грамотно построить перечисленные виды плоскостей на клетчатой бумаге – смотрите в справочных материалах о пространственных поверхностях.
Линейные неравенства в пространстве
Для лучшего понимания информации желательно хорошо изучить линейные неравенства на плоскости, поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.
Если уравнение задаёт плоскость, то неравенства
задают полупространства. Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.
Как и для линейных неравенствплоскости, справедлив аналогичный принцип: если одна точка полупространства удовлетворяет неравенству, то и ВСЕ точки данного полупространства удовлетворяют данному неравенству.
Читайте примеры и посматривайте на чертёж:
1) . Как понимать данное неравенство? «Икс» и «зет» могут быть любыми, а вот «игрек» всегда больше либо равно нулю. Данное неравенство определяет правое полупространство; так как оно нестрогое, то координатная плоскость входит в решение.
2) – «игрек» и «зет» могут быть любыми, а вот «икс» строго меньше нуля. Неравенство задаёт дальнее от нас полупространство, и ввиду его строгости, координатная плоскость не входит в решение.
3) Сначала мысленно начертим плоскость – данная плоскость параллельна «родной» координатной плоскости и расположена на высоте (на 2 единицы выше плоскости ). При любых «икс» и «игрек» – «зет» меньше либо равно двум. Поэтому неравенство определяет нижнее полупространство + саму плоскость .
4) Дана плоскость . Я специально подобрал плоскость, которая «высекает» треугольник в первом октанте (такой, как на чертеже). Требуется строгим неравенством задать полупространство, которое содержит начало координат.
Составим вспомогательный многочлен и вычислим его значение в начале координат: , таким образом, искомое неравенство: .
Проведённый обзор полезен не только в аналитической геометрии, но и для решения ряда задач математического анализа.
Как составить уравнение плоскости?
Конструировать уравнение плоскости будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность. Математика – царица наук, не стерва, но строгА. А уж насколько доступна, во многом зависит от вашего к ней отношения =)
Казалось бы, плоскость можно определить с помощью двух неколлинеарных векторов. Но векторы свободны и бродят по всему пространству, поэтому ещё нужна фиксированная точка.
Как составить уравнение плоскости по точке и двум неколлинеарным векторам?
Рассмотрим точку и два неколлинеарных вектора . Уравнение плоскости, которая проходит через точку параллельно векторам , выражается формулой:
! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.
Принципиально ситуация выглядит так:
Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (векторы будут свободно «вертеться» вокруг точки и зададут бесконечно много плоскостей).
Пример 1
Составить уравнение плоскости по точке и векторам .
Решение: Составим уравнение плоскости по точке и двум неколлинеарным векторам:
Определитель удобнее всего раскрыть по первому столбцу:
Раскрываем определители второго порядка:
На первом месте у нас находится знак «минус». Хорошим тоном считается убрать наглеца, в этих целях меняем знак у каждого слагаемого. Проводим дальнейшие упрощения и получаем уравнение плоскости:
Сократить здесь ничего нельзя, поэтому:
Ответ:
…числа, конечно, страшноваты получились для первого примера =) …но переделывать, пожалуй, не буду, на практике большие числа – вещь распространённая.
Как проверить задание? Для проверки пока не хватает информации, но я обязательно выполню её чуть позже.
Пример 2
Составить уравнение плоскости по точке и двум неколлинеарным векторам .
Это пример для самостоятельного решения, полное решение и ответ в конце урока.
Иногда может потребоваться решить обратную задачу – по известному уравнению плоскости найти параллельные ей векторы. Кстати, сколько параллельных векторов существует у плоскости? Бесконечно много. Однако нельзя объять необъятное, поэтому «вытащим» из уравнения плоскости три таких вектора:
Пусть плоскость задана общим уравнением . Тогда векторы будут параллельны данной плоскости (а, значит, компланарны), и любые два из них – линейно независимы. Так, в Примере № 1 мы составили уравнение плоскости . Построенной плоскости будут параллельны следующие векторы: . Если честно, не припомню, чтобы приходилось этим пользоваться, тем не менее, справка не лишняя.
Итак, «конструкция» из двух неколлинеарных векторов и точки однозначно определяет плоскость. Но существует более очевидный способ, о котором упоминалось выше, и он громким стуком в дверь уже давно просится на урок. Три точки. Дёшево и сердито.
Как составить уравнение плоскости по трём точкам?
Любые ли три точки пространства задают плоскость? Нет. Во-первых, точки должны быть различными. А во-вторых, они не должны лежать на одной прямой (сразу все три).
Уравнение плоскости, проходящей через три различные точки , которые не лежат на одной прямой, можно составить по формуле:
На самом деле это разновидность предыдущего способа, смотрим на картинку:
Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:
То есть, наша формула фактически совпадает с формулой предыдущего параграфа. Многие уже заметили явную аналогию с материалами статьи Уравнение прямой на плоскости. Закономерности будут сохраняться и дальше!
Чтобы не умереть от скуки, предлагаю раскрутить примеры-шарады:
Пример 3
Составить уравнение плоскости по точкам .
Решение: составим уравнение плоскости по трём точкам. Используем формулу:
Вот теперь и аналитически видно, что всё дело свелось к координатам двух векторов. Раскрываем определитель по первому столбцу, находим уравнение плоскости:
Больше ничего упростить нельзя, записываем:
Ответ:
Проверка напрашивается сама собой – в полученное уравнение плоскости нужно подставить координаты каждой точки. Если хотя бы одна из трёх точек «не подойдёт», ищите ошибку.
Для «мёртвого» зачёта всегда выполняйте проверку мысленно или на черновике!!!
Пример 4
Составить уравнение плоскости, проходящей через точки и начало координат.
Это пример для самостоятельного решения. Ещё раз присмотримся к формуле . В каждом столбце определителя встречаются координаты точки , и это можно с выгодой использовать. В предложенной задаче даны три точки: , начало координат. В качестве точки можно выбрать любую из трёх точек. Подумайте, как рациональнее оформить решение! Да, и постарайтесь, не пропускать это задание, в самом конце решения увидите важный технический нюанс ;-)
Вектор нормали плоскости (нормальный вектор)
Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов. Но для решения задач нам будет хватать и одного.
Если плоскость задана общим уравнением , то вектор является вектором нормали данной плоскости. Просто до безобразия. Всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости.
Обещанного три экрана ждут, вернёмся к Примеру № 1 и выполним его проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке и двум векторам . В результате решения мы получили уравнение . Проверяем:
Во-первых, подставим координаты точки в полученное уравнение:
Получено верное равенство, значит, точка действительно лежит в данной плоскости.
Во-вторых, из уравнения плоскости снимаем вектор нормали: . Поскольку векторы параллельны плоскости, а вектор перпендикулярен плоскости, то должны иметь место следующие факты: . Перпендикулярность векторов легко проверить с помощью скалярного произведения:
Вывод: уравнение плоскости найдено правильно.
В ходе проверки я фактически процитировал следующее утверждение теории: вектор параллелен плоскости в том и только том случае, когда .
Решение: Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:
Сначала из уравнения плоскости снимем вектор нормали: .
Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .
Перепишем вектор нормали в виде и найдём его длину:
Согласно вышесказанному:
Ответ:
Проверка: , что и требовалось проверить.
Читатели, которые внимательно изучили последний параграф урока Скалярное произведение векторов, наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :
Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор, и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.
Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.
С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:
Как составить уравнение плоскости по точке и вектору нормали?
Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.
Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:
Выглядит значительно привлекательнее, чем предыдущие мытарства. В некоторых задачах аналитической геометрии уравнение плоскости можно составить несколькими способами, и решение через точку и нормальный вектор – самое оптимальное.
Пример 6
Составить уравнение плоскости по точке и вектору нормали .
Решение: Используем формулу:
Ответ:
Проверка выполняется очень легко:
1) Из полученного уравнения снимаем вектор нормали: – всё хорошо, полученный вектор совпал с вектором из условия (в ряде случаев может получиться коллинеарный вектор).
2) Подставим координаты точки в уравнение плоскости:
Верное равенство, значит, точка принадлежит данной плоскости.
Вывод: уравнение плоскости найдено правильно.
Пример настолько прозрачен, что хочется немного завуалировать условие:
Пример 7
Найти уравнение плоскости, проходящей через точку перпендикулярно оси .
Это пример для самостоятельного решения. Просто, но со вкусом.
Перейдём к более содержательным примерам. Типовая задача:
Как построить плоскость, параллельную данной?
Пример 8
Построить плоскость, проходящую через точку параллельно плоскости .
Решение: Обозначим известную плоскость через . По условию требуется найти плоскость , которая параллельна плоскости и проходит через точку .
Выполним схематический чертёж, который поможет быстрее разобраться в условии и понять алгоритм решения:
У параллельных плоскостей один и тот же вектор нормали. Добавить нечего =) Осталось оформить мат в два хода:
1) Из уравнения найдём вектор нормали плоскости: .
2) Уравнение плоскости составим по точке и вектору нормали :
Ответ:
Как выполнить проверку, я уже рассказал.
Продолжаем раскидывать стог сена пространственной геометрии:
Как найти расстояние от точки до плоскости?
Расстояние от точки до плоскости – это длина перпендикуляра, опущенного из точки к данной плоскости:
Решение: анализировать тут нечего, главное, не допустить ошибку в вычислениях:
Ответ:
Такое даже для самостоятельного решения неловко предлагать.
Заключительный раздел урока будет посвящен взаимному расположению плоскостей. Мы уже немного поговорили о параллельных плоскостях, и сейчас продолжим тему:
Взаимное расположение плоскостей
Для практики наиболее важна информация о взаимном расположении двух плоскостей, но и о трёх плоскостях также будет краткая справка.
Рассмотрим две плоскости пространства, заданные общими уравнениями:
Две плоскости совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства
Рассмотрим плоскости и составим систему:
Из каждого уравнения системы следует, что . Таким образом, система совместна и плоскости совпадают.
Параллельные плоскости
Две плоскости параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .
На практике очень часто первые три коэффициента банально совпадают (). Посмотрим, например, на уравнения параллельных плоскостей из Примера № 8:
Комментарии, думаю, излишни, всё прекрасно видно. Но на всякий случай выполню формальную проверку, вдруг кому потребуется. Составим систему:
Из первых трёх уравнений следует, что , а из четвёртого уравнения следует, что , значит, система несовместна. Но коэффициенты при переменных пропорциональны, следовательно, плоскости параллельны.
Задача о нахождении параллельной плоскости уже была, поэтому решим что-нибудь новое:
Как найти расстояние между плоскостями?
Расстояние между двумя параллельными плоскостями выражается формулой:
Координаты точек нам неизвестны, да их и не нужно знать, поскольку перпендикуляр между плоскостями можно протянуть в любом месте.
Найдём расстояние между параллельными плоскостями Примера № 8:
Пример 10
Найти расстояние между параллельными плоскостями .
Решение: Используем формулу:
Ответ:
У многих наверняка возник вопрос: вот у этих плоскостей – первые три коэффициенты одинаковы, но это же не всегда так! Да, не всегда.
Пример 11
Найти расстояние между параллельными плоскостями
Проверим пропорциональность коэффициентов: , но , значит, плоскости действительно параллельны. Первые три коэффициента пропорциональны, но не совпадают. Однако формула-то предусмотрена для совпадающих коэффициентов!
Есть два пути решения:
1) Найдём какую-нибудь точку, принадлежащую любой из плоскостей. Например, рассмотрим плоскость . Чтобы найти точку, проще всего обнулить две координаты. Обнулим «икс» и «зет», тогда: .
Таким образом, точка принадлежит данной плоскости. Теперь можно использовать формулу расстояния от точки до плоскости , рассмотренную в предыдущем разделе.
2) Второй способ связан с небольшим трюком, который нужно применить, чтобы таки использовать формулу ! Это пример для самостоятельного решения.
Пересекающиеся плоскости
Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :
Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства
В качестве примера рассмотрим плоскости . Составим систему для соответствующих коэффициентов:
Из первых двух уравнений следует, что , но из третьего уравнения следует, что , значит, система несовместна, и плоскости пересекаются.
Проверку можно выполнить «по пижонски» одной строкой:
Параллельные плоскости мы уже разобрали, теперь поговорим о перпендикулярных плоскостях. Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, а для того, чтобы зафиксировать конкретную перпендикулярную плоскость, нужно задать две точки:
Пример 12
Дана плоскость . Построить плоскость , перпендикулярную данной и проходящую через точки .
Решение: Начинаем анализировать условие. Что мы знаем о плоскости ? Известны две точки. Можно найти вектор , параллельный данной плоскости. Но этого мало, нужен ещё один. Так как плоскости должны быть перпендикулярны, то вторым вектором следует взять нормальный вектор плоскости .
Проводить подобные рассуждения здОрово помогает схематический чертёж:
Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .
Кстати, теперь чётко видно, почему одна точка не определит перпендикулярную плоскость – вокруг единственной точки будет «вращаться» бесконечно много перпендикулярных плоскостей. Так же нас не устроит и единственный вектор (без всяких точек). Вектор является свободным и «наштампует» нам бесконечно много перпендикулярных плоскостей (которые, к слову, будут параллельны между собой). В этой связи минимальную жёсткую конструкцию обеспечивают две точки.
Задача разобрана, решаем:
1) Найдём вектор .
2) Из уравнения снимем вектор нормали: .
3) Уравнение плоскости составим по точке (можно было взять и ) и двум неколлинеарным векторам :
Ответ:
Проверка состоит из двух этапов:
1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения снимаем вектор нормали и рассчитываем скалярное произведение векторов:
Таким образом,
2) В уравнение плоскости подставляем координаты точек . Обе точки должны «подойти».
И первый, и второй пункт можно выполнить устно.
Перейдём к заключительной задаче урока:
Как найти угол между плоскостями?
Две пересекающиеся плоскости образуют четыре двухгранных угла и любой из этих углов называют углом между плоскостями.
Обозначим угол между плоскостями через :
Наклон плоскости однозначно определяется её вектором нормали, поэтому угол между плоскостями можно найти через угол между нормальными векторами данных плоскостей. А угол между векторами рассчитывается с помощью обыденной формулы, рассмотренной на уроке Скалярное произведение векторов:
Распишем формулу в коэффициентах:
Обратите внимание, что формула может дать и тупой угол, например, 150 градусов. Такой ответ не будет страшной ошибкой, но за угол между плоскостями, как правило, принимают острый угол, поэтому концовку задания лучше дополнить расчётом «традиционного» угла: 180 – 150 =30 градусов.
Задачка поинтереснее:
Пример 13
Найти угол между плоскостями
Это пример для самостоятельного решения. Решение и ответ в конце урока.
Что-то не хочется мне вас сегодня отпускать… наверное, хорошо себя вели и активно работали на уроке =) Придётся рассказать что-нибудь ещё.
Взаимное расположение трёх плоскостей
Три плоскости могут располагаться в пространстве 8 способами, если интересуют все случаи, пожалуйста, посмотрите в книге Атанасяна-Базылева или в Интернете, видел вроде в Википедии, точно уже не помню.
Самый известный случай взаимного расположения трёх плоскостей – плоскости пересекаются в одной точке. Живой пример находится совсем недалеко от вас. Посмотрите вверх – в угол комнаты, где пересекаются две стены и потолок. Пессимисты могут посмотреть вниз.
Аналитически данному случаю соответствует система линейных уравнений, которая имеет единственное решение.
Ничего не напоминает? Вот, оказывается, где прячется метод Крамера… – в углу вашей комнаты!
Пример 2: Решение: составим уравнение плоскости по точке и двум неколлинеарным векторам:
Ответ:
Пример 4: Решение: составим уравнение плоскости по трём точкам :
Ответ:
Пример 7: Решение: Так как плоскость перпендикулярна оси , то вектор является вектором нормали для данной плоскости. Уравнение плоскости составим по точке и вектору нормали :
Ответ:
Пример 11: Решение: Разделим все коэффициенты второго уравнения на два:
Используем формулу
Ответ:
Пример 13: Решение: Обозначим . Используем формулу:
За угол между плоскостями примем острый угол: Ответ: