Высшая математика – просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net Наш форум, библиотека и блог: mathprofi.com | |||
Математические формулы,
Высшая математика для чайников, или с чего начать? Аналитическая геометрия:
Векторы для чайников
Элементы высшей алгебры:
Множества и действия над ними
Пределы:
Пределы. Примеры решений
Производные функций:
Как найти производную?
Функции и графики:
Графики и свойства ФНП:
Область определения функции Интегралы:
Неопределенный интеграл.
Дифференциальные уравнения:
Дифференциальные уравнения первого порядка
Числовые ряды:
Ряды для чайников
Функциональные ряды:
Степенные ряды
Кратные интегралы:
Двойные интегралы
Элементы векторного анализа:
Основы теории поля
Комплексный анализ:
ТФКП для начинающих
Теория вероятностей:
Основы теории вероятностей
Математическая статистика:
Математическая статистика
Не нашлось нужной задачи? Не получается пример?
Часто задаваемые вопросы Заметили опечатку / ошибку? |
Определенный интеграл. Как вычислить площадь фигурыПереходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры. Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла. Для успешного освоения материала, необходимо: 1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Неопределенный интеграл. Примеры решений. 2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений. В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала Графики и свойства элементарных функций и статьи о геометрических преобразованиях графиков. Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент Материалы данного практикума изложены просто, подробно и с минимумом теории. Начнем с криволинейной трапеции. Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс: Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ. Пример 1 Вычислить площадь фигуры, ограниченной линиями , , , . Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО. При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу. В данной задаче решение может выглядеть так.
На отрезке график функции расположен над осью , поэтому: Ответ: У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений. После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно. Пример 2 Вычислить площадь фигуры, ограниченной линиями , , и осью Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Что делать, если криволинейная трапеция расположена под осью ? Пример 3 Вычислить площадь фигуры, ограниченной линиями , и координатными осями. Решение: Выполним чертеж: Ответ: Внимание! Не следует путать два типа задач: 1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным. 2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус. На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам. Пример 4 Найти площадь плоской фигуры, ограниченной линиями , . Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение: Значит, нижний предел интегрирования , верхний предел интегрирования . Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций. Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим. Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж: А теперь рабочая формула: Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле: Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ. В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть Завершение решения может выглядеть так: Искомая фигура ограничена параболой сверху и прямой снизу. Ответ: На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен не выше оси , то А сейчас пара примеров для самостоятельного решения Пример 5 Найти площадь фигуры, ограниченной линиями , . Пример 6 Найти площадь фигуры, ограниченной линиями , . В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни: Пример 7 Вычислить площадь фигуры, ограниченной линиями , , , . Решение: Сначала выполним чертеж: …Эх, чертеж хреновенький вышел, но вроде всё разборчиво. Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом! Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно: 1) На отрезке над осью расположен график прямой ; 2) На отрезке над осью расположен график гиперболы . Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому: Ответ: Переходим еще к одному содержательному заданию. Пример 8 Вычислить площадь фигуры, ограниченной линиями , В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически. Найдем точки пересечения прямой и параболы . Действительно, . Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые. На отрезке , по соответствующей формуле: Ответ: Ну, и в заключение урока, рассмотрим два задания сложнее. Пример 9 Вычислить площадь фигуры, ограниченной линиями , , Решение: Изобразим данную фигуру на чертеже. Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =) Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций), а также некоторые значения синуса, их можно найти в тригонометрической таблице. В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования. С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение: На отрезке график функции расположен над осью , поэтому: (1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на уроке Интегралы от тригонометрических функций. Это типовой прием, отщипываем один синус. (2) Используем основное тригонометрическое тождество в виде (3) Проведем замену переменной , тогда: Новые пределы интегрирования: У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений. (4) Здесь мы использовали свойство определенного интеграла , расположив пределы интегрирования в «привычном» порядке Ответ: Пример 10 Вычислить площадь фигуры, ограниченной линиями , , Это пример для самостоятельного решения. Полное решение и ответ на нижнем этаже. Вот, пожалуй, и все основные принципиальные приёмы нахождения площадей. Помимо рассмотренных методов интегрирования, иногда приходится применять формулу интегрирования по частям в определенном интеграле, что не представляет собой особых трудностей. Какой-то интересный пример придумать сложно, … хотя… арккотангенса вроде еще нигде не встречалось: Пример 11 Вычислить площадь фигуры, ограниченной линиями , и координатными осями. Полного решения не будет, надо же вас немного помучить. А правильный ответ скажу: . Весь необходимый материал для выполнения задания на сайте есть! ;-) И даже больше – через долгие три года, наконец-то появились статьи Вычисление площади в полярных координатах и Вычисление площади, если линия задана параметрически. Желаю успехов! Решения и ответы: Пример 2: Решение: Пример 5: Решение: Пример 6: Решение: Пример 10: Решение: Автор: Емелин Александр Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора? Zaochnik.com – профессиональная помощь студентам, cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5 |
© Copyright Александр Емелин, mathprofi.ru, 2010-2024, сделано в Блокноте |