Математика для заочников и не только

Высшая математика – просто и доступно!

Если сайт упал, используйте ЗЕРКАЛО: mathprofi.net

Наш форум и библиотека: + подписка на новости проекта!

Высшая математика:

Математика для заочников
Математические формулы,
таблицы и справочные
материалы

Математические сайты
>>> Удобный калькулятор

Не нашлось нужной задачи?
Сборники готовых решений!

Не получается пример?
Задайте вопрос на форуме!
>>> mathprofi.com   

Учимся решать:

Лекции-уроки по высшей математике для первого курса

Высшая математика для чайников, или с чего начать?

Аналитическая геометрия:

Векторы для чайников
Скалярное произведение
векторов

Линейная (не) зависимость
векторов. Базис векторов

Переход к новому базису
Векторное и смешанное
произведение векторов

Формулы деления отрезка
в данном отношении

Прямая на плоскости
Простейшие задачи
с прямой на плоскости

Линейные неравенства
Как научиться решать задачи
по аналитической геометрии?

Линии второго порядка. Эллипс
Гипербола и парабола
Задачи с линиями 2-го порядка
Как привести уравнение л. 2 п.
к каноническому виду?

Полярные координаты
Как построить линию
в полярной системе координат?

Уравнение плоскости
Прямая в пространстве
Задачи с прямой в пространстве
Основные задачи
на прямую и плоскость

Треугольная пирамида

Элементы высшей алгебры:

Множества и действия над ними
Основы математической логики
Формулы и законы логики
Уравнения высшей математики
Комплексные числа
Выражения, уравнения и с-мы
с комплексными числами

Действия с матрицами
Как вычислить определитель?
Свойства определителя
и понижение его порядка

Как найти обратную матрицу?
Свойства матричных операций.
Матричные выражения

Матричные уравнения
Как решить систему линейных уравнений?
Правило Крамера. Матричный метод решения системы
Метод Гаусса для чайников
Несовместные системы
и системы с общим решением

Как найти ранг матрицы?
Однородные системы
линейных уравнений

Метод Гаусса-Жордана
Решение системы уравнений
в различных базисах

Линейные преобразования
Собственные значения
и собственные векторы

Пределы:

Пределы. Примеры решений
Замечательные пределы
Методы решения пределов
Бесконечно малые функции.
Эквивалентности

Правила Лопиталя
Сложные пределы
Пределы последовательностей
Пределы по Коши. Теория

Производные функций:

Как найти производную?
Производная сложной функции. Примеры решений
Логарифмическая производная
Производные неявной, параметрической функций
Простейшие задачи
с производной

Производные высших порядков
Что такое производная?
Производная по определению
Как найти уравнение нормали?
Приближенные вычисления
с помощью дифференциала

Метод касательных

Функции и графики:

Графики и свойства
элементарных функций

Как построить график функции
с помощью преобразований?

Непрерывность, точки разрыва
Область определения функции
Асимптоты графика функции
Интервалы знакопостоянства
Возрастание, убывание
и экстремумы функции

Выпуклость, вогнутость
и точки перегиба графика

Полное исследование функции
и построение графика

Наибольшее и наименьшее
значения функции на отрезке

Экстремальные задачи

ФНП:

Область определения функции
двух переменных. Линии уровня

Основные поверхности
Предел функции 2 переменных
Повторные пределы
Непрерывность функции 2п
Частные производные
Частные производные
функции трёх переменных

Производные сложных функций
нескольких переменных

Как проверить, удовлетворяет
ли функция уравнению?

Частные производные
неявно заданной функции

Производная по направлению
и градиент функции

Касательная плоскость и
нормаль к поверхности в точке

Экстремумы функций
двух и трёх переменных

Условные экстремумы
Наибольшее и наименьшее
значения функции в области

Метод наименьших квадратов

Интегралы:

Неопределенный интеграл.
Примеры решений

Метод замены переменной
в неопределенном интеграле

Интегрирование по частям
Интегралы от тригонометрических функций
Интегрирование дробей
Интегралы от дробно-рациональных функций
Интегрирование иррациональных функций
Сложные интегралы
Определенный интеграл
Как вычислить площадь
с помощью определенного интеграла?

Что такое интеграл?
Теория для чайников

Объем тела вращения
Несобственные интегралы
Эффективные методы решения
определенных и несобственных
интегралов

S в полярных координатах
S и V, если линия задана
в параметрическом виде

Длина дуги кривой
S поверхности вращения
Приближенные вычисления
определенных интегралов


Метод прямоугольников

  Карта сайта

Лекции-уроки по высшей математике для второго курса

Дифференциальные уравнения:

Дифференциальные уравнения первого порядка
Однородные ДУ 1-го порядка
ДУ, сводящиеся к однородным
Линейные неоднородные дифференциальные уравнения первого порядка
Дифференциальные уравнения в полных дифференциалах
Уравнение Бернулли
Дифференциальные уравнения
с понижением порядка

Однородные ДУ 2-го порядка
Неоднородные ДУ 2-го порядка
Линейные дифференциальные
уравнения высших порядков

Метод вариации
произвольных постоянных

Как решить систему
дифференциальных уравнений

Задачи с диффурами
Методы Эйлера и Рунге-Кутты

Числовые ряды:

Ряды для чайников
Как найти сумму ряда?
Признак Даламбера.
Признаки Коши

Знакочередующиеся ряды. Признак Лейбница
Ряды повышенной сложности

Функциональные ряды:

Степенные ряды
Разложение функций
в степенные ряды

Сумма степенного ряда
Равномерная сходимость
Другие функциональные ряды
Приближенные вычисления
с помощью рядов

Вычисление интеграла разложением функции в ряд
Как найти частное решение ДУ
приближённо с помощью ряда?

Вычисление пределов
Ряды Фурье. Примеры решений

Кратные интегралы:

Двойные интегралы
Как вычислить двойной
интеграл? Примеры решений

Двойные интегралы
в полярных координатах

Как найти центр тяжести
плоской фигуры?

Тройные интегралы
Как вычислить произвольный
тройной интеграл?


Криволинейные интегралы
Интеграл по замкнутому контуру
Формула Грина. Работа силы

Поверхностные интегралы

Элементы векторного анализа:

Основы теории поля
Поток векторного поля
Дивергенция векторного поля
Формула Гаусса-Остроградского

Циркуляция векторного поля
и формула Стокса

Комплексный анализ:

Примеры решений типовых
задач комплексного анализа

Как найти функцию
комплексной переменной?

Решение ДУ методом
операционного исчисления

Как решить систему ДУ
операционным методом?

Теория вероятностей:

Основы теории вероятностей
Задачи по комбинаторике
Задачи на классическое
определение вероятности

Геометрическая вероятность
Задачи на теоремы сложения
и умножения вероятностей

Зависимые события
Формула полной вероятности
и формулы Байеса

Независимые испытания
и формула Бернулли

Локальная и интегральная
теоремы Лапласа

Статистическая вероятность
Случайные величины.
Математическое ожидание

Дисперсия дискретной
случайной величины

Функция распределения
Геометрическое распределение
Биномиальное распределение
Распределение Пуассона
Гипергеометрическое
распределение вероятностей

Непрерывная случайная
величина, функции F(x) и f(x)

Как вычислить математическое
ожидание и дисперсию НСВ?

Равномерное распределение
Показательное распределение
Нормальное распределение

Отблагодарить автора >>>

Если Вы заметили опечатку, пожалуйста, сообщите мне об этом

Заказать контрольную
Часто задаваемые вопросы
Гостевая книга

Кнопка для сайта: Высшая математика – просто и доступно!

Когда нет времени:

Авторские работы на заказ

По школьным предметам.
Подготовка к ЕГЭ

По высшей математике
и физике

Помогут разобраться в теме,
подготовиться к экзамену



  Карта сайта


Однородные дифференциальные уравнения первого порядка


На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменными и линейными неоднородными уравнениями этот тип ДУ встречается практически в любой контрольной работе по теме диффуров. Если Вы зашли на страничку с поисковика или не очень уверенно ориентируетесь в дифференциальных уравнениях, то сначала настоятельно рекомендую проработать вводный урок по теме – Дифференциальные уравнения первого порядка. Дело в том, что многие принципы решения однородных уравнений и используемые технические приемы будут точно такими же, как и для простейших уравнений с разделяющимися переменными.

В чём отличие однородных дифференциальных уравнений от других типов ДУ? Это проще всего сразу же пояснить на конкретном примере.

Пример 1

Решить дифференциальное уравнение

Решение:
Что в первую очередь следует проанализировать при решении любого дифференциального уравнения первого порядка? В первую очередь необходимо проверить, а нельзя ли сразу разделить переменные с помощью «школьных» действий? Обычно такой анализ проводят мысленно или пытаются разделить переменные на черновике.

В данном примере переменные разделить нельзя (можете попробовать поперекидывать слагаемые из части в часть, повыносить множители за скобки и т.д.). Кстати, в данном примере, тот факт, что переменные разделить нельзя, достаточно очевиден  ввиду наличия  множителя .

Возникает вопрос – как же решить этот диффур?

Нужно проверить, а не является ли данное уравнение однородным? Проверка несложная, и сам алгоритм проверки можно сформулировать так:

В исходное уравнение:

вместо  подставляем , вместо  подставляем , производную не трогаем:

Буква лямбда – это некоторый абстрактный числовой параметр, дело не в самих лямбдах, и не в их значениях, а дело вот в чём:

Если в результате преобразований удастся сократить ВСЕ «лямбды» (т.е. получить исходное уравнение), то данное дифференциальное уравнение является однородным.

Очевидно, что лямбды сразу сокращаются в показателе степени:

Теперь в правой части выносим лямбду за скобки:

Обе части уравнения можно сократить на эту самую лямбду:


В результате все лямбды исчезли как сон, как утренний туман, и мы получили исходное уравнение.

Вывод: Данное уравнение является однородным

Поначалу рекомендую проводить рассмотренную проверку на черновике, хотя очень скоро она будет получаться и мысленно.

Как решить однородное дифференциальное уравнение?

У меня очень хорошая новость. Абсолютно все однородные уравнения можно решить с помощью одной-единственной (!) стандартной замены.

Функцию «игрек» необходимо заменить произведением некоторой функции  (тоже зависящей от «икс») и «икса»:

Выясняем, во что превратится производная  при такой замене, используем правило дифференцирования произведения. Если , то:

Подставляем  и  в исходное уравнение :

Что даст такая замена? После данной замены и проведенных упрощений мы гарантировано получим уравнение с разделяющимися переменными. Еще раз подчеркиваю, для ЛЮБОГО однородного уравнения нужно провести одну и ту же замену: строго  и, соответственно, строго .

После подстановки проводим максимальные упрощения уравнения:


Далее алгоритм работает по накатанной колее уравнения с разделяющимися переменными.

Если  – это функция, зависящая от «икс», то .
Таким образом:

Разделяем переменные, при этом в левой части нужно собрать только «тэ», а в правой части – только «иксы»:

Переменные разделены, интегрируем:


Согласно моему первому техническому совету из статьи Дифференциальные уравнения первого порядка константу во многих случаях целесообразно «оформить» в виде логарифма.

После того, как уравнение проинтегрировано, нужно провести обратную замену, она тоже стандартна и единственна:
Если , то
В данном случае:

В 18-19 случаях из 20 решение однородного уравнения записывают в виде общего интеграла.

Ответ: общий интеграл:

Почему почти всегда ответ однородного уравнения даётся в виде общего интеграла?
В большинстве случаев невозможно выразить «игрек» в явном виде (получить общее решение), а если и возможно, то чаще всего общее решение получается громоздким и ужасно корявым.

Так, например, в рассмотренном примере, общее решение получить можно:

 – общее решение.
Ну, еще куда ни шло. Хотя, согласитесь, все равно кривовато смотрится.

Кстати, в данном примере я не совсем «прилично» записал общий интеграл. Это не ошибка, но в «хорошем» стиле, напоминаю, общий интеграл принято записывать в виде . Для этого сразу после интегрирования уравнения, константу следует записать без всякого логарифма (вот и исключение из правила!):

 

И после обратной замены получить общий интеграл в «классическом» виде:

Полученный ответ можно проверить. Для этого нужно продифференцировать общий интеграл, то есть найти производную от функции, заданной неявно:

Избавляемся от дробей, умножая каждую часть уравнения на :

Получено исходное дифференциальное уравнение, значит, решение найдено правильно.

Желательно всегда проводить проверку. Но однородные уравнения неприятны тем, что проверять их общие интегралы обычно трудно – для этого необходима весьма и весьма приличная техника дифференцирования. В рассмотренном примере в ходе проверки уже пришлось находить не самые простые производные (хотя сам по себе пример достаточно простой). Если сможете проверить – проверяйте!

Пример 2

Проверить уравнение на однородность и найти его общий интеграл. Выполнить проверку.

Это пример для самостоятельного решения, мой ответ в конце урока максимально упрощен, а сам общий интеграл представлен в виде . Напоминаю, что если у вас получится ответ в иной записи, то это еще не значит, что вы допустили ошибку.

Не правда ли простой пример? Внешний вид диффуров очень обманчив ;-) И да, в решении появилась важная тема, которую мы серьёзно разовьём к экватору урока.

Пример 3

Решить дифференциальное уравнение

Решение: проверим уравнение на однородность, для этого в исходное уравнение вместо  подставим , а вместо  подставим :



Все лямбды сократились, и получилось исходное уравнение, значит, данное ДУ является однородным.

Проведем стандартную замену:

Подставим  и  в исходное уравнение:

После подстановки результат стремимся максимально упростить:

Разделяем переменные и интегрируем:

Общий интеграл получен, теперь его нужно довести его до ума. Перед тем как выполнять обратную замену , рекомендую снова максимально упростить полученное выражение. Об этом я уже упомянул в решении Примера №2.


Возможно, у некоторых возник вопрос, почему я иногда вдруг убираю модуль под логарифмом? Причина проста – выражение под знаком логарифма, в данном случае , неотрицательно, а значит, модуль записывать не обязательно.

Упрощаем дальше:

Вот теперь обратная замена:

Под корнем нужно привести слагаемые к общему знаменателю и вынести из-под корня всё, что можно. Эти действия часто приходится выполнять в ходе решения однородного уравнения, запомните их:

Ответ: общий интеграл:

Я выполнил проверку общего интеграла, но приводить её не буду, а то вы больше не придёте к такому маньяку. Попробуйте для интереса найти производную. Времяпровождение получите из разряда тех, о которых долго вспоминают. И гордятся.

Пример 4

Выполнить проверку на однородность и решить дифференциальное уравнение

Вот здесь проверка общего интеграла будет не очень сложной. Полное решение и ответ в конце урока.

Рассмотрим пару примеров, когда однородное уравнение задано с готовыми дифференциалами.

Пример 5

Решить дифференциальное уравнение

Решение будем привыкать оформлять компактнее. В чистовом оформлении работы не обязательно выполнять проверку на однородность. На чистовике она гораздо чаще не проводится, чем проводится. Проверка делается на черновике или мысленно, а если вы прорешали первые 4 примера, то многие из вас однородные уравнения уже узнают «в лицо».

Таким образом, почти всегда решение начинается с записи: «Данное уравнение является однородным, проведем замену: …».

Но вернемся к нашему уравнению. В нём присутствуют дифференциалы  и . Уравнение можно решить и с дифференциалами, но алгоритм решения будет немного другой, более того, значительно увеличится риск путаницы и ошибок.

Поэтому, если однородное уравнение дано в дифференциалах, то сначала я рекомендую выразить производную , а дальше использовать уже накатанную схему решения.

Для того чтобы выразить производную, нужно каждое слагаемое разделить на :

Вот так-то лучше и понятнее.

Теперь коснёмся одного момента, который вы уже заметили в ходе решения 2-го и 4-го примеров. В дифференциальных уравнениях (и особенно это типично для однородных ДУ) некоторые решения «лежат на поверхности». Чаще всего, это очевидное решение . Подставим и и её производную  в наше уравнение (что легко сделать и устно):

Получено верное равенство, значит, функция  является решением уравнения и этот факт желательно отметить при оформлении задачи. Зачем? В ходе дальнейших преобразований существует риск потерять данное решение, то есть оно может не войти в общий интеграл, как это, например, случилось в Примере №4.

Дальше всё тривиально, проведем замену :
:
После подстановки максимально упрощаем уравнение:

Разделяем переменные:

И вот здесь снова СТОП: при делении тоже есть риск потерять решения! Давайте разберёмся, почему: правомерно ли изначально рассматривать случай, когда ? Конечно. Если двучлен находится справа вверху, то значения  совершенно легальны. Но, «сбрасывая» его в знаменатель левой части, мы «выводим корни из игры» и рискуем потерять следующие функции :

Первая функция уже «обработана», осталось исследовать вторую. Для этого подставим  и  в исходное уравнение :

Получено верное равенство, а значит, функция  является решением ДУ и это потенциально потерянное решение! Берём его на заметку и как ни в чём ни бывало разруливаем диффур дальше. Интегрируем обе части:

Интеграл левой части стандартно решается с помощью выделения полного квадрата, но в диффурах гораздо удобнее использовать метод неопределенных коэффициентов:

Используя метод неопределенных коэффициентов, разложим подынтегральную функцию в сумму элементарных дробей:


Таким образом:

Находим интегралы:

Перед обратной заменой в новорожденном общем интеграле опять упрощаем всё, что можно упростить:

Вот теперь обратная замена :

Возвращаемся к «нашим баранам»:

Найденное и отмеченное ранее решение  входит в общий интеграл при нулевом значении константы (опять же легко проверяется устно), поэтому его не нужно дополнительно записывать в ответ. Чего не скажешь о функции   – она «пролетела мимо кассы» и удостаивается отдельной оговорки:

Ответ: общий интеграл: . Ещё одно решение:

Кстати редкий случай, когда общее решение однородного ДУ выражается в более или менее «приличном» виде:

Общее решение:

Но это уже понты, после чего преподаватель с удовольствием предложит вам задание повышенной сложности, которое вы будете решать до конца семестра. Было бы хорошей шуткой, если бы не было горьким опытом.

Попробуйте выполнить проверку общего решения, здесь она не сверхсложная.

А теперь назревший разговор:

Немного о потере решений в дифференциальных уравнениях

В однородных уравнениях решение может потеряться в результате типовой замены и дальнейших сокращений, однако, на практике распространена и другая причина потери решений (о которой я уже начал рассказывать) – это неосмотрительное деление.

На самом деле с этим мы столкнулись в первом же примере вводного урока о дифференциальных уравнениях. В процессе решения уравнения «игрек» оказался в знаменателе: , но , очевидно, является решением ДУ и в результате неравносильного преобразования (деления) есть все шансы его потерять! Другое дело, что оно вошло в общее решение при нулевом значении константы.

Аналогичная история с уравнением Примера 3 того же урока, в ходе решения которого мы «сбросили»  в знаменатель. Строго говоря, следовало предварительно проверить, а не является ли  решением данного диффура. Ведь является! Но и тут «всё обошлось», поскольку эта функция вошла в общий интеграл  при нулевом значении константы.

В действительности, конечно же, вовсе «не обошлось» – ситуация была под контролем, но я намеренно умолчал об этих нюансах на 1-м уроке, чтобы не перегружать «чайников» информацией.

При неравносильных преобразованиях ВСЕГДА проверяйте (по крайне мере, устно), не теряете ли вы решения! Какие это преобразования? Чаще всего, сокращение на что-то или деление на что-то. Так, например, при делении на  нужно проверить, являются ли функции  решениями дифференциального уравнения. В то же время при  делении на  необходимость в такой проверке уже отпадает – по причине того, что этот делитель не обращается в ноль.

Перечисленные тонкости также теряют актуальность, если в задаче требуется найти только частное решение (см., например, Пример №2 первого урока).

Следующий диффур – самостоятельно:

Пример 6

Решить дифференциальное уравнение

Полное решение и ответ в конце урока. Попробуйте заодно для тренировки и здесь выразить общее решение.

В заключительной части урока рассмотрим еще пару характерных задач по теме:

Пример 7

Решить дифференциальное уравнение

Решение: «любимая функция» не является решением, что убавляет хлопот (пока что). Идём проторенной дорогой. Данное уравнение является однородным, проведем замену:

После замены проводим максимальные упрощения:

Разделяем переменные:

 

! Та-да-да-даааааа…. Деление, как мы помним, чревато потерей решений!

Интегрируем:

Интеграл левой части можно найти двумя способами: методом выделения полного квадрата или методом неопределенных коэффициентов. Как я уже отмечал, в диффурах удобнее использовать второй метод (если, конечно, многочлен можно разложить на множители). Здесь многочлен на множители раскладывается: можно решить квадратное уравнение , найти его корни и в результате: . Опытные студенты способны выполнить подбор корней и устно. И учитывая, что , в поле нашего пристального внимания попадают две подружки:

Обе функции являются корнями ДУ (проверьте самостоятельно), и в результате деления мы рискуем потерять эти решения! Берём их на заметку и продолжаем:

Методом неопределенных коэффициентов получим сумму дробей:


Таким образом:

Получившийся общий интеграл упрощаем:

И только после упрощений выполняем обратную замену:

И на последнем рубеже не забываем о «потеряшках»: функция  вошла в общий интеграл (при ), однако  – НЕ вошла, и поэтому её необходимо приписать дополнительно:

Ответ: общий интеграл: . Еще одно решение:

Пример 8

Решить дифференциальное уравнение

Это пример для самостоятельного решения. Отмечу, что время от времени однородное уравнение встречается в виде дроби, и типичный пациент выглядит примерно так: . Здесь, к слову, функция   заведомо не может быть решением – по той причине, что сумма  изначально находится в знаменателе.

Наверное, многие обратили внимание, что во всех приведённых диффурах мы не решали задачу Коши. Это не случайно. В практических заданиях с однородными уравнениями частное решение запрашивается довольно редко. Но, тем не менее, такие примеры есть в статье Уравнения сводящиеся к однородным, которую я рекомендую изучить «по горячим следам» чтобы закрепить свои навыки решения. Впрочем, частные интегралы мы уже находили на первом уроке по теме.

Существуют и более сложные однородные уравнения. Сложность состоит не в замене переменной или упрощениях, а в достаточно трудных или редких интегралах, которые возникают в результате разделения переменных. У меня есть примеры решений таких однородных уравнений – страшненькие интегралы и страшненькие ответы. Но о них не будем, потому что на ближайших уроках (см. ниже) ещё успею замучить я хочу вас видеть свежими и оптимистичными!

Дифференциальные уравнения, сводящиеся к однородным;

Линейные неоднородные дифференциальные уравнения.

Успешного продвижения!

Решения и ответы:

Пример 2: Решение: Проверим уравнение на однородность:
Вместо  подставляем , вместо  подставляем :

Все лямбды сократились, и получилось исходное уравнение, значит, данное ДУ является однородным.
Очевидно, что  является одним из  решений данного уравнения.
Проведем замену:  и максимально упростим уравнение:

Разделяем переменные, слева собираем «тэ», справа – «иксы»:

Интегрируем:

Надо сказать, с интегралом левой части повезло, бывает гораздо хуже.
Максимально упрощаем общий интеграл.
Если есть дроби, то от них лучше избавиться, умножаем каждую часть на 2:

Константу  я переобозначу через :

(Если этот момент не понятен, читайте статью Дифференциальные уравнения первого порядка)
Собираем в правой части всё под логарифм, затем избавляемся от логарифмов

Обратная замена:

Умножаем все слагаемые на :

Ответ: общий интеграл:

Примечание: Решение входит в общее решение (когда ), поэтому его не нужно дополнительно указывать в ответе.

Проверка: Дифференцируем общий интеграл:

Получено исходное дифференциальное уравнение, значит, решение найдено верно.

Пример 4: Решение: Проверим уравнение на однородность:

Таким образом, данное уравнение является однородным.
Очевидно, что  является одним из  решений уравнения.
Проведем замену:


После подстановки проводим максимальные упрощения:

Разделяем переменные и интегрируем:

Новорожденный общий интеграл получен, здесь константу я не стал загонять под логарифм, в данном случае – это ни к чему. Использовать или не использовать этот прием с константой –  понимание придет с опытом.
Упрощать особо нечего, поэтому проводим обратную замену: :

Общий интеграл можно упростить:

Ответ: общий интеграл: . Ещё одно решение:
Примечание: здесь решение не вошло в общий интеграл (т.к. не существует соответствующего значения константы), поэтому его следует указать дополнительно!

Пример 6: Решение: Преобразуем уравнение:

Очевидно, что  является решением.
 Данное уравнение является однородным, проведем замену:


Максимально упрощаем:

Разделяем переменные и интегрируем:

! Функция  уже учтена.

Упрощать нечего, поэтому проводим обратную замену :

Ответ: общий интеграл: . Ещё одно решение:

Примечание: также здесь можно выразить и общее решение: , для этого сразу после интегрирования константу следует загнать под логарифм.

Пример 8: Решение: Данное ДУ является однородным, проведем замену:



!

! Поскольку , то решений мы точно не теряем!

Обратная замена:

Ответ: общий интеграл:

Автор: Емелин Александр


Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Качественные работы без плагиата – Zaochnik.com


© Copyright mathprofi.ru, Александр Емелин, 2010-2017. Копирование материалов сайта запрещено